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INVERSE SCATTERING FOR THE KLEIN-GORDON EQUATION 

BY G. PERLA MENZALA 

Communicated by Richard K. Miller, January 26, 1977 

In this note we would like to announce recent results concerning the so-
called Inverse Scattering problem for the Klein-Gordon equation in three di­
mensions. Complete proofs of this work will appear in [1]. 

We consider the Klein-Gordon equation with a linear perturbation, that is 

(1) utt - Aw +m2w + q(x)u = 0 

in £1 = R3, -°° < t < + «>. Here the subscripts denote partial derivatives, m > 
0 and A is the Laplacian operator. The potential q(x) is assumed to be a real 
valued function in R3, nonnegative and satisfying certain reasonable conditions 
at infinity which we will specify later. The initial Cauchy data for (1) at t = 0 
will be assumed to be C°° with compact support. In the space of such solutions 
of (1) we define the (total) energy of u as 

N | | = ~ ƒ 3[|grad u\2 + u2 + m V + q(x)u2] dx 
R 

where Igrad u\2 = EJLjW .̂. It is easy to show that \\u\\E is constant i.e. we are 
dealing with a conservative equation. If we assume (for example) that q(x) E 
Ll O Z,°°(R3) then it is well known (see for example [3] and [4]) that given a 
solution u of (1) there then exists a unique pair u± of solutions of (1) with q = 
0 such that 

llw-w±lltf—*0 as*->±°o. 

The operator which relates u_ —• u+ is called the scattering operator and is de­
noted by S. One want to know what can be said about q(x) if we know the 
operator 5? This is a problem of physical relevance (see [5], [6] ). If q(x) is 
spherically symmetric, then there has been considerable research on this problem 
in the past twenty five years, mainly through the Gelfand-Levitan-Marchenko 
approach. In dimensions higher than one, very little is known. Here, we announce 
a "local" uniqueness result concerning the 3-dimensional inverse problem for (1). 

THEOREM. Let qx{x) and q2(x) be a nonnegative continuous functions 
which belong to L1 O L°°(R3). Let S(qt) and S(q2) denote the scattering oper­
ators associated with utt - Aw + m2u + qxu = 0 and vtt - Av + m2v + q2v = 0 
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respectively. If S(qx) = S(q2)9then 

hm -7 r u-
^ O + ^ l ' * ^ ) 

Therefore, ifqt(x) ¥= q2(x) for some xGR 3 and the above limit is different 
from zero, then Siq^^ S(q2). 

Here, 

H?l ""«21' = S U P SUP 
M - XGR3 

f<=R 

where u__ denotes any incoming free solution of (1) (with q = 0), R the Riemann 
function of (1) with q = 0, and * denotes spatial convolution, a(qv q2) is given 
by a constant times 

(Iteilli/^teillî76 + Il«illî/2lteilli/2)aiflfill2/3llflfillî/3 + M i ) 

+ (II^Hi>/3^2llî/6 + Il^llî/2^2lli/2)(l^2lli>/3lte2ll?/3 + Bflfllll)-
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R(xf t-r)*(qx- q2)ujxt r) dr 


