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Let H be the upper half plane and T a discrete subgroup of AutH. Sup­
pose that H mod Y is of finite measure. This work stems from the question 
whether there is an algebraic interpretation for the moduli of unitary represen­
tations of T similar to the case when H mod T is compact (cf. [3], [4], [5]). 
We show that this is indeed the case via the moduli of vector bundles on the 
compactification of H mod r , provided with some additional structures which we 
propose to call parabolic structures. The idea of parabolic structures is inspired 
from A. Weil's work [6, §2, Chapter I, p. 56]. 

Let Xbe a smooth, irreducible, projective curve defined, say, over an alge­
braically closed field k. By vector bundles on X we understand algebraic vector 
bundles. 

DEFINITION 1. Let V be a vector bundle on X and Q G X. Then a quasi-

parabolic structure of Vat Q is giving a flag on the fibre VQ of Fat Ô, i.e., 
giving linear subspaces F*VQ of VQ, 

VQ =FXVQ DF2VQ D ••• DFrVQ; dimF(VQ = /,; / 1 > / 2 > - - - > / r 

We call I = (ll9 . . . 9lr) the type (or flag type) of the quasi-parabolic structure. 
Let kx = lx - /2 , k2 = l2 - /3, . . . , fcfWl = /,._! - lr, kr = lr\ then kt are 
called the multiplicities of the quasi-parabolic structure. 

DEFINITION 2. Let V be a vector bundle on X and Q G X. Then a para­

bolic structure of V at Q is giving 
(i) a quasi-parabolic structure of V at Q; say I = (lt, . . . , lr) is its type 

and {k.} its multiplicities, and 

(ii) constants a = (a1, . . . , an) called the weights of the parabolic 
structure such that 0 < ax < a2 < • • • < otn < 1 and there are r distinct ele­
ments among a, say a' = (o^, . . . , Û£), 0 < a\ < a2 < • • • < ar < 1, such 
that OL\ occurs kx times, a2 occurs k2 times, . . . , ar occurs kr times among a. 

We call a. the weight ofFlVQ. Note that lx = « = rkV. 
Let F, H> be vector bundles on X with quasi-parabolic structures at Q. An 

isomorphism ƒ: F —• W of vector bundles is said to be a quasi-parabloic iso­
morphism if the types of V, W at Q are the same and fçiF'Vç) = F1WQ ( /^: 
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isomorphism induced by ƒ on the fibers of V, W at Q). Suppose, moreover, we 
are given parabolic structures of V, W at Q consistent with the given quasi-
parabolic structures; we say that ƒ is a parabolic isomorphism if ƒ is a quasi-
parabolic isomorphism and weight of F*VQ = weight oî F*WQ. 

DEFINITION 3. Let V be as in Definition 2. Then the parabolic degree 

of V is defined by 
n 

par deg V = deg V + £ at (deg V = degree V). 
i=l 

Also we write parn(V) for the expression 

par »(¥) = tx(V) + fec^/rkV; //(F) = (deg V)/rkV. 

We give similar definitions when we are given parabolic structures at a 
finite number of points of X. 

DEFINITION 4. Let W, V be vector bundles on X with parabolic structures 
at Q G X. We say that W is a parabolic subbundle of V if 

(i) W is a subbundle of Fin the usual sense; 

(ii) given /0 , Ff*W C F*V for some /. Let /0 be such that F*<>W C F / o F 
and F'*W £ F / o + X K; then weight of Ffo V = weight of F ' O ^ # 

We define similarly the notion of a parabolic quotient bundle of V. Note 
that given an ordinary subbundle W of F (resp. quotient bundle), there exists a 
canonical structure of a parabolic subbundle (resp. quotient bundle) on W. 

Following Mumford (cf. [1]), we introduce 

DEFINITION 5. Let F be a vector bundle on Zwith parabolic structures 
at a finite number of points of X. We say that Fis parabolic stable (resp. semi-

stable) if V proper parabolic subbundle W of F, we have par ju(W) < parju(F) 
(resp. <). 

PROPOSITION 1. Let V be a vector bundle on X with parabolic structures 
at a finite number of points of X. Suppose that V is parabolic semistable. Then 
3 a filtration of V by parabolic subbundles V.9 V = Vx D V2 D • • • , such that 

(i) par JJL(V.) = par//(F) and V. is parabolic semistable, 
(ii) V./ V. + j (with the canonical parabolic structure) is parabolic stable, 

and 
(iii) g r F = 0 F I . / ^ . + 1 is well determined, Ie., gr V(up to parabolic 

isomorphism) is independent of the filtration { Vt} of V with properties (i) and (ii). 

Let VB(d, a) denote the category of parabolic semistable vector bundles 
F on X with a parabolic structure at a single point Q G X (we assume this for 
simplicity of notation) of fixed weight a = (ott, . . . , an) and fixed ordinary 
degree d. Let ~ denote the equivalence relation in VB(d, a), Vx ~ F2 if gr Vx 

= gr F2 . Let M(d, a) be the set of equivalence classes under this equivalence 
relation. 
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THEOREM 1. Suppose that g = genus of X > 2. Then there is a natural 

structure of a normal projective variety on M(d, a) of dimension n2(g - 1) 4- 8 

where 8 is the dimension of the variety of flags in an n-dimensional vector space 

of type given by the type of the underlying quasi-parabolic structure. Further 

M(d, a) is smooth at the points V where V is parabolic stable. 

Suppose now that the base field k = C and X - Q = i/mod V where H is 
the upper half plane and T is a discrete subgroup of Aut//. Fix a parabolic 
fixed point ô ' , ô ' € H of V (H being the usual H U certain boundary points). 
Let T0 be the isotropy subgroup of T at Q'. Fix a generator y0 of r o ( r o « Z). 
Let R(oc) denote the equivalence classes of unitary representations x of T such 
that x(To) *S conjugate to the diagonal matrix with entries (e *, . . . , e w), 
a = (<*!, . . . ,(*„), 0<OL1 <a2 ••• <àn < 1. 

THEOREM 2. Suppose that g>2. Then there is a canonical identification 

of R(OL) with the underlying topological space ofM(d, a) with d = - SJLjfy 
(or equivalently par deg V = 0, F G M(d, a)). 
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