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1. Let us consider the equation 

(1) Ex + ax=Nx, 

where E: D(E) —• S, D(E) C S, is a linear not necessarily bounded operator in a 
real Hilbert space S with 1 < dim W < °°, W = ketE, and N: S —> S is a continuous 
nonlinear operator. In terms of the alternative method (see Cesari [1] , [2]), let 
P: S —> S be the orthogonal projector with range PS = S0 = W = ker E, let 
St = (I -P)S, and let S1 be also the range of E. Let H: Sx -—• 5'1 denote a lin­
ear, bounded, compact operator (a partial inverse of E) such that the usual rela­
tions of the alternative method (selfadjoint case) hold: (hx) H(I - P)E = I - P; 
(h2) EP = PE\ (h3) £»(ƒ - F) = / - P. Let ( , ) and || || denote inner product 
and norm in 5, and let I = ||//(/ - P)||. 

I (AN EXISTENCE THEOREM "AT RESONANCE"). Under the above hypo­

theses, let us assume that 

(B) there is a constant J0 > 0 such that \\Nx\\ < / 0 /or allx ES] and 

(N0) r/zere is a constant R0 > 0 swc/z f/zaf (7V>, x*) < 0 [or always 

(Nx, x*) > 0] for all xES,x*eS0 with Px=x*> ||x*|| > R0, \\x - Px\\ < L/ 0 . 
Then the equation Ex == Nx has at least a solution x G X. 

We refer to Cesari and Kannan [6] for a proof of I by Schauder's fixed 
point theorem, and to Kannan and McKenna [8] for a proof based on a Leray-
Schauder argument. It has been pointed out that the hypotheses contained in 
recent specific and relevant theorems by Landesman and Lazer [9], Williams [13], 
Neëas [11], and Lazer and Leach [10] concerning existence at resonance for bound­
ary value problems for ordinary and partial differential equations, imply conditions 
(B) and (N0). But the same hypotheses of the aformentioned specific theorems 
also imply the stronger condition (Ne) below. In turn, this condition has a stronger 
implication which we present here. 

II (AN EXISTENCE THEOREM "ACROSS A POINT OF RESONANCE"). Under 
the same general hypotheses above, let us assume that (B) holds, and that 
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(Ne) there are constants R0 > 0, e > 0, K > LJ0 such that (Nx, x*) < 

-e||jc*|| (or always (Nx, x*) > e\\x*\\) for all x G 5 , x * G S 0 with Px = **, ||x*|| 

>R0,\\x-Px\\<K. 

Then, there are constants a0 > 0, O 0 such that, for every \a\ < a0, the 

equation Ex 4- ax = Nx has at least a solution x with \\x\\ < C 

We refer to Cesari [3] for a proof of II by Schauder's fixed point theorem. 
Note that, in equation (1), the parameter a can "move across the point of reso­
nance a = 0", without the solution becoming infinite, due to the nonlinearity of 
the problem. Our result II, in the large and under sole qualitative hypotheses, 
seems to be new and of some physical significance. In [3], [4], [5] Cesari has 
also proved more general statements, with S replaced by Banach spaces X, Y, for 
N: X —> Y continuous and of slow growth, and the term ax replaced by a Ax, 

with A: X —• Y any continuous, nonlinear operator, mapping bounded sets into 
bounded sets. As applications of II we restate, for instance, the theorems of 
Landesman and Lazer, Williams, and Lazer and Leach, in a stronger form. 

2. Let us consider the ordinary differential equation 

(2) x" 4- (m2 4- a)x 4- h(x) = p(t), x scalar, 

where m is an integer, h is a real valued function in (-°°, 4- <*>), p(t) is a In-

periodic function, and a is a real parameter. 

III. If p is continuous and In-periodic, if h is continuous with \h(s)\ <M 
for all real s, and if there are constants c <d, C<D such that h(s) < C for 
s<c; h(s) >Dfors>d, and moreover (A2 + B2)1/2 < 2(D - C), where A = 
llnp(t)cos mt dt, B = flnp(t)sin mt dt, then there are constants a0 > 0,Af > 0 
such that for every \a\ < a0, equation (2) has at least a In-periodic solution x(t)9 

-oo < t < 4-00 with \x(f)\ < Af. 

For a = 0 this theorem was proved by Lazer and Leach [8]. The same 

statement holds also for h replaced by -ft. 

3. Let us consider the partial differential equation 

(3) Ex+ax + h(x) = ƒ(*), t e G, 

where G is a bounded domain in JR^ of points t = (tx, . . . , tv), E is the differ­

ential operator of order 2m in G defined by 

Ex = £ (-l^D^^x), t E G, 

with 0^0 = 00a, and Xa^^t)^^ > c|f | 2 m for some constant c > 0 and where 

2 ranges over all |a| = ||3| = m. In order to simplify the exposition, and follow-
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ing de Figueiredo, we limit ourselves to strong solutions, and therefore under 
some smoothness hypotheses, say aa^ G Cl/31 in G, and 9G of class C2m. We as­
sume that the homogeneous linear Dirichlet problem £x = 0 , x G / Ç n H2m, 
has nontrivial solutions, thus, 1 < dim W < <*>? w = ker E. Let h(s), - <» < s < 
+ <*>, be a continuous real valued function, for which the limits R = h(+°°) and 
r = /i(-oo) exist and are finite. For every element w G W let G+ , G*" denote the 
subsets of all t G G, where w(>) > 0 and w(/) < 0, respectively, and let w+ = 
/ G + |w| <2r, w~ = / G _ M dt. 

IV. JThder /7*e conditions above and for f G L2(G), if for every w GW we 

also have Rw~ - rw+ < fGf(f)w(t) dt < Rw+ - rw~, then there are constants 

a0 > 0, C> 0 such that, for every real a with \a\ < a0, equation (3) has at 

least a solution xGH™ n ^ 2 m wiYA ||x||2m < C 

The same statement holds also for h replaced by -h. For a = 0, m = 1 
this statement was proved by Landesman and Lazer [9], and for a = 0, m > 1 
by Williams [13]. The case in which h depends on t, x, and the partial deriva­
tives of x of orders < 2m - 1 has been studied by de Figueiredo [7] for a = 0, 
and his statement too can be restated in the strong form above. Analogous re­
sults have been proved for the case in which h may grow with x of order r, 0 < 
r < 1, by de Figueiredo [7] for a = 0, and these statements too can be given 
the strong form above in terms of the alternative method (cf. Cesari [4]). For 
nonselfadjoint problems, see Shaw [12] and Cesari [4], [5]. 
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