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diminishing returns. It is probably hopeless to buck the current trend toward 
eliminating all requirements for foreign languages, and we can probably no 
longer ask that advanced graduate students have minimal competence in 
simple, elegant French. But we can perhaps ask that the translations serve the 
students as well as the original. 
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Potential theory on locally compact abelian groups, by Christian Berg and 
Gunnar Forst, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 
87, Springer-Verlag, Berlin, Heidelberg, New York, 1975, vi + 197 pp., 
$25.40. 

There are not many books on the general potential theory from a nonprob-
abilistic point of view, and nearly none is concerned with convolution kernels 
different from the newtonian kernel (Landkoff s book being partly an excep­
tion). Therefore this book fills a gap and will be welcome and useful. 

The authors consider only a simple and important case, where everything 
runs smoothly: the potential kernel is a positive convolution operator on a 
locally compact abelian group, and is the "vague" integral of a transient 
semigroup of positive measures. There is no mention of important and recent 
papers on nonabelian groups and recurrent semigroups. On the other hand 
probabilistic interpretations in terms of Hunt's processes are not given. 

A good deal of the treated material has been well known for many years, 
but appears for the first time in a text-book (of course such a book should have 
been written before). The three following topics deserve a particular mention: 

(a) The study of negative definite functions (the terminology is due to Beurling, 
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who has investigated these functions, mainly in the symmetrical case, but this 
notion is older and goes back to Von Neumann, Schoenberg, Levy and 
others). Let us recall that a family {/xj,>0 of probability measures on a locally 
compact abelian group G is a convolution semigroup if and only if there exists 
a continuous negative definite function \p on the dual group G satisfying 
jxt = exp(—t\p) for t > 0, jxt being the Fourier transform of \it. The semigroup 
is said to be transient if the vague integral K = J0°° \it dt exists (such a measure 
K will be called a transient convolution potential kernel). The Port and Stone 
theorem states that {JU,,},>0 is transient if and only if Re(l/ip) is locally 
integrable on G. One gives an "analytic" proof of the "only if" part of this 
theorem. A parallel study of Bernstein functions leads to another representa­
tion for transient convolution semigroups of measures carried by [0, +oo[ (by 
means of Laplace transform), and to a notion of subordinate semigroup. 

(b) The study of some remarkable convex cones of completely monotonie 
functions, recently introduced by Hirsch, for instance the cone of Stieltjes 
transforms of positive measures carried by [0,+oo[. These cones play an 
important role in the so called symbolic calculus on potential operators, and 
lead to several extensions of a theorem of Ito: if K is a transient convolution 
potential kernel, and if /x is a positive measure on [0,1[ , then J0 Kadii(a) is still 
a transient convolution potential kernel (this theorem is noteworthy, since the 
cone of all the transient convolution kernels on a given group is generally not 
convex). 

(c) The "rough"(not fine) potential theory with respect to a transient convolution 
potential kernel: excessive measures, F. Riesz decomposition theorem, ba­
layage theorem, identity between transient convolution kernels and "perfect" 
kernels (i.e. kernels associated to a "fundamental family", a notion I intro­
duced many years ago), etc. 

The book is divided into three unequal chapters. The first one (harmonic 
analysis, pp. 1-38) gives the definitions and statements concerning the 
convolution of measures on a locally compact abelian group and the rudi­
ments of Fourier analysis on such a group (an original exhibition of the 
Fourier transform of a-not necessarily bounded-positive definite measure is 
given). Chapter two (negative definite functions and semigroups, pp. 39-96) 
studies the relations between these two notions, and introduces the concepts 
of potential operators and of subordinate semigroups. Chapter three (potential 
theory for transient convolution semigroups, pp. 97-190) is the longest and 
gives many properties of a transient convolution potential kernel. 

Thus the authors are particularly interested in methods of Fourier analysis 
in potential theory, hence their systematic use of negative definite functions. 
These methods are very elegant but they apply only to convolution kernels on 
an abelian group. In my opinion the notion of codissipativity, due to Hirsch, 
might have been introduced: this notion is useful, not only for the sake of 
natural generalizations (for instance to convolution kernels on homogeneous 
spaces), but even in the abelian case. On the other hand, I could regret the lack 
of a complete proof for some fundamental results of this abelian theory. For 
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instance the Lévy-Khintchin representation formula for negative definite 
functions is proved only in the symmetrical case (following Harzallah's 
method). There are other examples. And it is still a challenge for an analyst to 
discover a nonprobabilistic proof of the most difficult part of the Port and 
Stone theorem in the unsymmetrical case (the real case is much simpler and 
had been solved before by Beurling and myself). 

The book is clear. Each of the 18 paragraphs starts with a short outline and 
finishes with a sufficient, but not exhaustive, bibliography. It is written with 
great care and there are very few misprints. Its reading is easy and enjoyable. 
Some straightforward proofs are left as exercises to the reader, even when the 
corresponding results are subsequently used. Several simple and illuminating 
examples are thoroughly detailed. To sum up: a highly recommendable 
introduction to the general potential theory from an "analytic" point of view. 
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Academic Press, New York, San Francisco, London, 1975, xiii 4- 231 pp., 
$24.50. Vol. 2, by Avner Friedman, Academic Press, New York, San Francisco, 
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A diffusion process with values in R defined for some interval [0, T] of time 
is a Markov process with R for its state space which has almost surely 
continuous trajectories. The conditional distribution of an infinitesimal incre­
ment x(t + h) — x(t) of such a process given the past history {x(s)} for 0 < s 
< / is supposed to be approximately Gaussian with mean hb(t,x(t)) and 
covariance ha(t,x(t)). For each t and x, b(t,x) is a vector with components 
{b'• (/,*)} and a(t, x) is a symmetric positive semidefinite matrix with entries 
{aM,x)}. Although such a description may not hold for every diffusion 
process, one can describe a wide class of such processes in terms of their 
associated coefficients {atj(t,x)} and {bAt,x)}. These are often referred to as 
diffusion and drift coefficients. 

The problem then is to start with some given [aM.x)} and {b(t,x)} and 
then show that under suitable regularity conditions on a and b there 
corresponds to it a unique diffusion process. Since a Markov process is fully 
determined by its transition probabilities it is enough to construct the 
transition probability function p(s, x, /, dy) from the coefficients a and b. One 
way of doing this is to look at some associated partial differential equations 
known as Kolmogorov's backward equations. 

Let us fix a t in 0 < t < T. For some fixed function f(y) on Rd one 
considers the function u(s, x) defined by 

(1) u(s,x) = Jf(y)p(s,x,t,dy) for 0 < s < /. 

Assuming that the function u(s,x) is smooth, one shows that it satisfies the 
differential equation 


