C⁰-DENSITY OF STRUCTURALLY STABLE VECTOR FIELDS¹

BY M. M. C. de OLIVEIRA²

Communicated by P. T. Church, March 5, 1976

Let M^n be a C^{∞} -compact, connected, *n*-manifold without boundary. Let $X^r(M)$ be the set of C^r -vector fields on M, $1 \le r \le \infty$. $X \in X^r(M)$ is C^r structurally stable if there exists a neighbourhood U_X of X in $X^r(M)$ such that given $Y \in U_X$ there exists a homeomorphism $h: M \to M$ taking oriented trajectories of X to oriented trajectories of Y. Let $\Sigma^r(M) \subset X^r(M)$ be the set of C^r -structurally stable vector fields on M. In this paper we announce the proof that $\Sigma^r(M)$ is always dense in $X^r(M)$ with respect to the C^0 -topology. This result is the same theorem that Smale and Shub proved for diffeomorphisms in [2] and [1].

The main tools for our proof are the theorems of Smale [2], Shub [1] and Zeeman [3]. Details of the proof will appear elsewhere. The author wishes to thank his supervisor Professor E. C. Zeeman for many helpful conversations, suggestions and encouragment.

Main theorem.

THEOREM 1. Let $1 \le r \le \infty$. Let $X \in X^r(M)$. Then X is C^r -isotopic to a $Y \in \Sigma^r(M)$ by an isotopy which is arbitrarily small in the C^0 topology.

COROLLARY 2. Let $1 \le r \le \infty$. Then $\Sigma^{r}(M)$ is dense in $X^{r}(M)$ with respect to the C^{0} topology.

For the next theorem, suppose M admits a nonsingular vector field and let $NS^{r}(M)$ be the set of nonsingular C^{r} -vector fields on M.

THEOREM 3. Any $X \in NS^{r}(M)$ is C^{r} -isotopic (through nonsingular vector fields) to a $Y \in \Sigma^{r}(M) \cap NS^{r}(M)$ by an isotopy which is arbitrarily small in the C^{0} -topology.

REFERENCES

1. M. Shub, Structurally stable diffeomorphisms are dense, Bull. Amer. Math. Soc. 78 (1972), 817-818. MR 46 #6398.

2. S. Smale, Stability and isotopy in discrete dynamical systems, Dynamical Systems (Proc. Sympos., Univ. of Bahia, Salvador, 1971) (M. Peixoto, Editor), Academic Press, New York, 1973, pp. 527-530. MR 49 #3984.

3. E. C. Zeeman, C^0 -density of stable diffeomorphisms and flows, Proc. Colloquium on Smooth Dynamical Systems, Southampton, 1972. (Southampton University reprint).

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY, ENGLAND

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 58F10.

 ¹ This paper summarizes a portion of the author's Ph. D. thesis at Warwick University.
² Work supported by a scholarship from CAPES (Brazil).