ON L1 CONVERGENCE OF CERTAIN COSINE SUMS

BY JOHN W. GARRETT¹ AND ČASLAV V. STANOJEVIĆ

Communicated February 15, 1975

Abstract. It is shown that to a certain cosine series f, a Rees-Stanojevic' cosine sum g_n can be associated such that g_n converges to f pointwise, and a necessary and sufficient condition for L^1 convergence of g_n to f is given. As a corollary to that result we have a generalization of the classical result of this kind. Other corollaries are given concerning the well-known integrability conditions.

This paper gives an analogue for modified cosine sums of the classical result concerning L^1 convergence of a Fourier sine series. Rees and Stanojević [1] introduced these cosine sums that approximate their pointwise limit "better" than the classical cosine series since they converge in the L^1 metric space to their limit when the classical cosine series may not.

Lemma 1. Let $f(x) = \lim_{n \to \infty} f_n(x)$ where $f_n(x) = \frac{1}{2}a(0) + \sum_{k=1}^n a(k)\cos kx$, $\lim_{n \to \infty} a(n) = 0$, and $\sum_{k=0}^\infty |\Delta a(k)| < \infty$. Let $g_n(x) = \frac{1}{2}\sum_{k=0}^n \Delta a(k) + \sum_{k=1}^n \sum_{j=k}^n \Delta a(j)\cos kx$. Then $\lim_{n \to \infty} g_n(x) = f(x)$.

THEOREM 1. Let f, f_n , and g_n be as defined in Lemma 1. Then g_n converges to f in the L^1 metric if and only if given $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $\int_0^\delta |\Sigma_{k=n+1}^\infty \Delta a(k) D_k(x)| < \epsilon$ for all $n \ge 0$, where $D_k(x)$ is the Dirichlet kernel.

COROLLARY 1. Let f_n and f be as defined in Lemma 1. If for $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that $\int_0^\delta |\Sigma_{k=n}^\infty \Delta a(k) D_k(x)| < \epsilon$ for all $n \ge 0$ then f_n converges to f in the L^1 metric if and only if $\lim_{n \to \infty} a(n) \log n = 0$.

COROLLARY 2. Let f and g_n be as defined in Lemma 1. If $\sum_{n=1}^{\infty} |\Delta^2 a(n)|(n+1) < \infty$, then g_n converges to f in the L^1 metric.

COROLLARY 3. Let f and g_n be as defined in Lemma 1. If $\sum_{k=1}^{\infty} |\Delta a(k)| \log k < \infty$, then g_n converges to f in the L^1 metric.

COROLLARY 4. Let f and g_n be as defined in Lemma 1. If a(n) = b(n) + c(n) where $\lim_{n\to\infty} b(n) = \lim_{n\to\infty} c(n) = 0$, $\sum_{n=1}^{\infty} |\Delta b(n)| \log n < \infty$, and $\sum_{n=1}^{\infty} |\Delta^2 c(n)| (n+1) < \infty$, then g_n converges to f in the L^1 metric.

AMS (MOS) subject classifications (1970). Primary 42A20, 42A32.

Key words and phrases. L¹ convergence of cosine sums.

¹Portions of these results appear in a doctoral thesis of John W. Garrett at the University of Missouri-Rolla in 1974.

COROLLARY 5. Let f and g_n be as defined in Lemma 1. If $a(n) = \alpha(n)\beta(n)$ where $\sum_{n=1}^{\infty} |\Delta\alpha(n)| < \infty$, $|\beta(n)| \leq M$, $\sum_{n=1}^{\infty} |\Delta^2\beta(n)|(n+1) < \infty$, and $\sum_{n=1}^{\infty} |\beta(n)\Delta\alpha(n)| \log n < \infty$, then g_n converges to f in the L^1 metric.

Proofs and details of these results will appear elsewhere.

REFERENCE

1. C. S. Rees and Č. V. Stanojević, Necessary and sufficient conditions for integrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579-586. MR 48 #794.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-ROLLA, ROLLA, MISSOURI 65401