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1. Background. Intuitive arguments drawn from quantum mechanics and 
optics suggest that there should be some relation between the closed geodesies 
(periodic "particles") on a compact Riemannian manifold X and the eigenvalues 
(periodic "waves") of the Laplace-Beltrami operator A^. Indeed, in 1959, Huber 
[8] proved, for X a surface of constant negative curvature, that the set of lengths 
of closed geodesies on X and the spectrum of Ax determine one another. The 
relation given by Huber between these two sequences of numbers is sufficiently 
complicated to make it extremely difficult to find one sequence explicitly, given 
the other. 

Recently, Colin de Verdière [2], then Chazarain [1] and Duistermaat and 
Guillemin [3] have shown that, for most Riemannian metrics on any differenti-
able manifold, the spectrum of the Laplacian determines the lengths of the closed 
geodesies and their Morse indices modulo 4. Here, the lengths of the closed 
geodesies appear as the singular points of the distribution 

ô(0 = T r a c e d * ) = £ e
i ^ t 

' \ JE Spec Ax 

on the real line. This result, although very striking, leaves open some important 
questions. To apply it in any particular case, one would need to know a lot 
about Spec Ax to get any information about the closed geodesies; even then, a 
formidable calculation would be involved in all but the simplest cases. In fact, 
when one is "handed" a Riemannian manifold, it is more likely that one knows 
something about the closed geodesies than about the spectrum. 

In quantum mechanics, the eigenvalues are energy levels, and any available 
information about them is of interest. In a series of four papers culminating in 
[6] , Gutzwiller used the method of Feynman integrals to find a contribution to 
the spectral density distribution 

a(X) = Z 6(X - X.) 
v ' \.eSpec Av
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corresponding to a single closed geodesic 7. For stable 7, this contribution is a 
series of ô-functions at locations which are presumably approximate eigenvalues; 
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for 7 unstable, the contribution is a series of smooth peaks. Gutzwiller's argu­
ments are quite physical and make no pretense of rigor, but his results have been 
very suggestive. 

Recently, Voros [12] has clarified Gutzwiller's work in the case of stable 
closed geodesies and has provided simpler, though still heuristic, arguments based 
on the Keller-Maslov correction of the Bohr-Sommerfeld quantization condition. 
Essentially, Voros replaces the given classical system by its completely integrable 
linearization at the closed geodesic (in the cotangent bundle T*X) and sees 
which of the invariant tori satisfy the quantization condition. 

The purpose of the present note is to announce a proof of Voros' result, 
based upon an extension of Hörmander's calculus of Fourier integral operators 
[5], [11]. 

2. Statement of Theorem. Before stating our theorem, we introduce some 
terminology and notation. Let 7 be a closed geodesic on the k + 1 dimensional 
manifold X. Denote by Py the linearized Poincare map of 7; it is a symplectic 
automorphism of the tangent space Vy of a 2fc-dimensional manifold transverse 
to 7 in the unit sphere bundle in T*X. 7 is called nondegenerate elliptic if the 
eigenvalues of Py are all distinct and have modulus one. The map Py then splits 
into a direct sum of two-dimensional rotations through angles 01? . . . , 0k be­
tween 0 and 27T. The Morse index of 7 is the index of 7 as a critical point of 
the length functional on the loop space of 7. Finally, our proof requires the 
assumption that T*X admits a metaplectic structure [5]. This is a very weak 
requirement, satisfied for example if X is orientable, and probably not really 
necessary for the result to be true. 

THEOREM. If 7 is a nondegenerate elliptic closed geodesic on X with 
length L, rotation angles 61, . . . , 0k, and Morse index IJL, then for every k-tuple 
(nv . . . , nk) of nonnegative integers there exists a sequence \l9 X2, . . . of 
eigenvalues of Ax satisfying 

yj\ = L-1(n101 + . . . + nkek + 2irn + /1) + Ofr"*). 

REMARK. If one drops the term 0(n~Vl) in (*) and computes the re­
sulting contribution from all these eigenvalues to o(t), one obtains a pole at 
t = L whose residue is exactly that calculated in [3]. It remains to be seen 
whether the singularities of o(t) corresponding to unstable closed geodesies can 
also be traced to the spectrum itself. 

3. Comments on the proof. The idea for the proof comes from a tech­
nique used by one of us [13] to demonstrate a theorem of Moslov [10] relating 
a sequence of eigenvalues of A^ to a Lagrangian submanifold L contained in the 
unit sphere bundle of T*X. (It is this theorem which Voros applies to the in­
variant tori.) The technique involves constructing out of L a conic Lagrangian 
submanifold A C T*X x T^S1 and considering an associated Fourier integral 
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operator as an approximate intertwining operator between A x and A-^. It was 
clear that an extension of the Fourier integral operator calculus from Lagrangian 
to isotropic submanifolds would permit an extension of Maslov's result to the 
case where L is isotropic and invariant under the geodesic flow. One such ex­
tension is provided by the complex Fourier integral operators of Melin and 
Sjöstrand [11], which leads to the part of our Theorem with (nv . . . , nk) = 0. 
Another is given by the calculus developed in Guillemin [5]. The symbols of 
the intertwining operators in this calculus turn out to be the symplectic spinors 
[9] on Vy which are invariant under Py. This accounts for the presence of the 
rotation angles in (*) and the restriction of the Theorem to metalinear manifolds. 

Further details of our proof may be found in the last section of [5]. 

Our collaboration was made possible by invitations to the Colloquia on 
Fourier Integral Operators (Nice, May 1974) and Symplectic Geometry and 
Mathematical Physics (Aix-en-Rovence, June 1974), for which we would like 
to thank Professors J. Chazarain and J. M. Soudan. 
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