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1. Let / be a countable set. A ("standard") Markov transition function 
(P(t)) on / may be regarded as a family { ptJ( • ): i, ƒ G1} of functions on [0, °°) 
such that (for /, j EI and s, t E [0, °°)) 

Pif(0>0, Zpik(t)=h 
kei 

Pifi + 0 = Z Pik^Pkfi^ l i m PM = P//(0) = 1. 

If (-P(O) is a Markov transition function on /, the (Doob-Kolmogorov) limits 

~qti = lim t~l [1 -p t f(01, fy = lim f "%($) 

exist in [0, °°] and satisfy 

(DK1) 0<^<oo (i^fi 

( D K 2 ) £«*<-«*<-• 
The / x / matrix Q = (q^) is called the Q-matrix of (/*(0) and we write Q = 

no). 
The following theorem solves the Q-matrix problem for the case when all 

states are instantaneous (qit = - °°, V/)-

THEOREM. Let Q be an I x I matrix with 

0 ) <fo = - ~ (VO; 0 < ^ < o o (Vi ƒ:/*ƒ). 

Fc?r ö to Z?e r#e Q-matrix of a Markov transition function (P(t))9 it is necessary 
and sufficient that the following conditions (2) and (3) hold: 

(2) Z Qaf^%f<°° (Va,b:a*b); 

(3) /or every finite subset H of I, 
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^ H* £ %' = °-

[TVöte. The theorem remains true if "Markov" is replaced by "sub-Markov".] 
ACKNOWLEDGEMENT. Paul Seymour (Swansea) sorted out the combinatorics 

of Lemma 2 and thus allowed me to give the above theorem in its '̂ proper" form. 
My clumsy attempt at Lemma 2 worked only under a superfluous extra hypothesis. 

2. Sketched proof of necessity of (2) and (3). Suppose that Q is the Q-
matrix of a Markov transition function (P(t)). Let X be a Ray version of a Mar­
kov process (taking values in some Ray-Knight compactification E of ƒ ) with Ray 
transition function extending (P(t)). See Getoor [2]. 

LEMMA 1 (LOCAL CHARACTER PROPERTY). Let G be an open subset of 
Ë and let heG CM. Then (with Gc denoting Ë\ G), 

(4) Z «w<~. 

Notation. Write Q(h, Gc CM) for the sum (4). 
PROOF. Define 

X?=Xt, t< TQC = inf{s > 0: Xs G G% 

Gc 

Then XG is a "standard" chain with "minimal" state-space (G n ƒ ) U 3. By 
(DK1), 

oo > lim t~lPh{X? = b}> Q(h, Gc n I), 
tio 

Condition (2) now follows from the Hausdorff property of the (metrizable) 
Ray-Knight topology. Condition (3) follows from the fact that under hypothesis 
(1) no point of ƒ can be isolated in /. 

Notes, (i) The above arguments modernise those used to prove (2) and (3) 
in my 1967 paper [4]. 

(ii) Property (3) may be expressed in the following equivalent form: 
(3*) there exists an infinite subset K of I such that Q(i, K\i)<°°, \/iG I. 

3. Proof of the sufficiency of conditions (2) and (3) is much harder. The 
main motivation comes from the probabilistic "branching" procedure which under­
lies Kendall's remarkable analytic construction of the "tree" process in the 1958 
paper [3]. However, the "local character property" dominates the proof of 
"sufficiency" too. 

We now assume that Q is an I x ƒ matrix satisfying (1), (2) and (3). 
We say that / is tree-labelled if / is "labelled": / = I0 U Ix U I2 U • • • , 

where I0 = {0}, and, for « E N , 

In = {°'l'2 * ' # ln' *V h> • • • >in G N>* 
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Let n be the immediate predecessor map of 7\{0} to / : 

ni = 0ili2 ' " * *„_i ^In-\ when i = 0iti2 ' ' * in ^In-

We can regard n as being (rather than "inducing") a tree-labelling. 

LEMMA 2 (P. D. SEYMOUR). There is a tree-labelling irofl such that 

4(i) liminf <fy = 0, 
j<=TT l{ i} 

m Z [fy-fl/71 <°°> Vie/, 

w/îere Q~ is the I x ƒ raâtfrâ: defined as follows: 

9/7 =9// ( T / e W U i r - ^ O , 

= 0 otherwise. 

We now assume ƒ is already tree-labelled in accordance with Lemma 2. 

4. For each z, we choose a certain special type of chain X^ with minimal 
state-space {/} U 7r_1{/}, with Markov transition function, and with g-matrix 
GW satisfying 

5(i) -<$ ) = 00> if=iti ( /e i r -HO), 

500 - < # ) < 0 ° ' <$ = 0 (/eir^o,**/). 
It is important to realise that condition 4(i) is both necessary and sufficient for 
the existence of a chain X ^ with Markov transition function and with ö-matrix 
satisfying conditions (5). It should also be realised that X ^ is necessarily a com­
plicated chain with infinitely many fictitious states. 

5. Kendall's branching procedure. The chain X^ has minimal state-space 
{0, 01, 02, . . . } . The state 01 is stable for X ( 0 ) with rate a01 (say). During 
each (exponentially distributed) visit by X^ to 01, replace X^ by a chain on 
{01} U T T - ^ O I } with the P ( 0 1 ) law of X(0l\ (In effect, this last-mentioned 
chain is killed at rate a01.) After modifying X^ on its "01-intervals", we obtain 
a chain on {0, 01} U {02, 03, . . . } U {011, 012, . . . } for which the first two 
states (and only these) are instantaneous. 

By proceeding in the obvious inductive fashion, we cm-provided that we 
have chosen the X^ with sufficient care-obtain a "projective limit" chain X~ 
with ö-matrix Q-t Since Q differs only "finitely" from Q~ in the sense of 4(ii), 
it is easy (with the same proviso as above) to extend the Levy system of X~ so 
as to produce a chain X with the desired ô-matrix Q. 

The way to choose the X^ will be explained in the "full" version of this 
work. The existence of the limit chain X~ is proved by the method in Freedman's 
book [1]. 
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