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1. Let I be a countable set. A (“standard”) Markov transition function
(P(?)) on I may be regarded as a family { p,;(*): i, j € I} of functions on [0, =)
such that (for i, j €I and s, ¢t € [0, )

p;®>0, 3 p®=1,
ker

P+ 0= 2 puE)p®), lim p;u) = p;;(0) = 1.
kel ulo

If (P(?)) is a Markov transition function on I, the (Doob-Kolmogorov) limits
=Tim =1 =1 ¢ —1
—q; —Pfg t7 1 —p;@], q;j —glg 17 py(®)

exist in [0, o] and satisfy

(DK1) 0<q; < (@+)),
(DK2) D Qi S—qy <o,
k#i

The I x I matrix Q = (qy;) is called the Q-matrix of (P(¢)) and we write Q =
P'(0).

The following theorem solves the Q-matrix problem for the case when all
states are instantaneous (q;; = — °°, Vi).

THEOREM. Let Q be an I x I matrix with
€)) 4y =—= (V); 0<gqy;<eo (Vij:i#j).

For Q to be the Q-matrix of a Markov transition function (P(t)), it is necessary
and sufficient that the following conditions (2) and (3) hold:

@ 2 4 Nay <> (Va b:a#b);
j&{a,b}

(3) for every finite subset H of I,
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liminf 3 g, =0.
i hEH

[Note. The theorem remains true if ‘““Markov” is replaced by “sub-Markov”.]

ACKNOWLEDGEMENT. Paul Seymour (Swansea) sorted out the combinatorics
of Lemma 2 and thus allowed me to give the above theorem in its “proper” form.
My clumsy attempt at Lemma 2 worked only under a superfluous extra hypothesis.

2. Sketched proof of necessity of (2) and (3). Suppose that Q is the Q-
matrix of a Markov transition function (P(¢)). Let X be a Ray version of a Mar-
kov process (taking values in some Ray-Knight compactification E of I) with Ray
transition function extending (P(¢)). See Getoor [2].

LEMMA 1 (LOCAL CHARACTER PROPERTY). Let G be an open subset of
Eandlet h € G N 1. Then (with G° denoting E\G),
4 2 <
jEGenr
Notation. Write Q(h, G° N I) for the sum (4).
ProoFr. Define

X°=X,, t<T_ =inf{s>0:X, €G,
=9, t= TG -
Then X€ is a “standard” chain with “minimal” state-space (G N 1) U 9. By

(DK1),
o > 1% t~1PR{ XS =93} > Q(h, G° N I).
t

Condition (2) now follows from the Hausdorff property of the (metrizable)
Ray-Knight topology. Condition (3) follows from the fact that under hypothesis
(1) no point of I can be isolated in I.

Notes. (i) The above arguments modernise those used to prove (2) and (3)
in my 1967 paper [4].

(ii) Property (3) may be expressed in the following equivalent form:

(3%) there exists an infinite subset K of I such that Q(i, K\i) < e, Vi€ L

3. Proof of the sufficiency of conditions (2) and (3) is much harder. The
main motivation comes from the probabilistic “branching” procedure which under-
lies Kendall’s remarkable analytic construction of the “tree” process in the 1958
paper [3]. However, the “local character property” dominates the proof of
“sufficiency” too.

We now assume that Q is an I x I matrix satisfying (1), (2) and (3).

We say that [ is tree-labelled if 7 is “labelled”: I =7, U1, UL, U .-,
where I, = {0}, and, for n € N,

I, ={0iiy =+~ i, i,i,,...,i, EN}L
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Let 7 be the immediate predecessor map of I\{0} to I:

mi=0iyi, ~++i,_, €I,_, wheni=0ii, i, €I,
We can regard 7 as being (rather than “inducing”) a tree-labelling.

LEmMA 2 (P. D. SEYMOUR). There is a tree-labelling m of I such that

4(i lim inf ¢q;; =0,

® jen— i} 4

4(ii) Y lgy—q5]1 <, Vi€l
j*i

where Q~ is the I x I matrix defined as follows:
a; =a; fi€@VUri{i,
=0 otherwise.
We now assume [ is already tree-labelled in accordance with Lemma 2.

4. For each i, we choose a certain special type of chain X® with minimal
state-space {i} U 7~ 1{;}, with Markov transition function, and with Q-matrix
0D satisfying

5() —q ==, ¢ =q; (jer D,
5(ii) —qP <o, gP=0 (e i} k#))

It is important to realise that condition 4(i) is both necessary and sufficient for
the existence of a chain X¥) with Markov transition function and with Q-matrix
satisfying conditions (5). It should also be realised that X*) is necessarily a com-
plicated chain with infinitely many fictitious states.

5. Kendall’s branching procedure. The chain X(°) has minimal state-space
{0,01, 02, ...}. The state O1 is stable for X(©) with rate ag, (say). During
each (exponentially distributed) visit by X ©) t0 01, replace X () by a chain on
{01} U 7~ 1{ 01} with the P(°D law of X(°1), (In effect, this last-mentioned
chain is killed at rate a,,.) After modifying X (©) on its “Ol-intervals”, we obtain
a chain on {0, 01} U {02,03, ...} U {011,012, ...} for which the first two
states (and only these) are instantaneous.

By proceeding in the obvious inductive fashion, we can—provided that we
have chosen the X® with sufficient care—obtain a “projective limit” chain X~
with Q-matrix @~. Since Q differs only “finitely” from Q™ in the sense of 4(ii),
it is easy (with the same proviso as above) to extend the Levy system of X~ so
as to produce a chain X with the desired Q-matrix Q.

The way to choose the X®) will be explained in the “full” version of this
work. The existence of the limit chain X~ is proved by the method in Freedman’s
book [1].
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