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Throughout we assume that R is a left noetherian ring, not necessarily com-
mutative. R-modules are left modules, [M] denotes the isomorphism class and
E(M) the injective hull of a module M.

The (left) spectrum of R, denoted Spec R, is taken to be the set of isomor-
phism classes of indecomposable injective modules. We denote by G(R) the
directed graph whose set of vertices is the set Spec R and such that if [V,],
[V,] € Spec R there is a directed edge from [V,] to [V,] in G(R) if and only
if there exist critical (see [2, p. 9]) submodules S, and S, of ¥, and V, and a
short exact sequence 0 — S, — A4 — 8§, — 0,4 C V,. For a left ideal I of
R define K(I) to be the subset of Spec R consisting of [V'] such that there exists
[W] € Spec R, a nonzero map a: R/ — W, and a directed path in G(R) from
[W] to [V]. If there is a nonzero module map from W to V there is a directed
path in G(R) from [W] to [V].

PROPOSITION 1. The collection of subsets of Spec R of the form K(I), I a
left ideal of R, is a basis for the closed sets of a topology on R. If R is commuta-
tive then Spec R is homeomorphic to the classical spectrum with its Zariski, or
hull-kernel, topology.

For each x € Spec R we fix an indecomposable injective module V' such
that [V,] =x. For a subset Y of Spec R we define Vy =1l cy V, Ey =
Endg(Vy), and Ry = EndEy(VY) = Biendz (Vy). We regard Vy as a right
Ey-module. We define a presheaf of rings over Spec R by letting, for each open

subset U, the ring of sections over U be Ry;, with the obvious restriction maps.

THEOREM 2. The above presheaf is a sheaf and for each open subset U of
Spec R, Ry; is naturally identified with the quotient ring of R with respect to the
torsion theory determined by the injective module V;. In particular, Rgpecr
is naturally identified with R.

If R is commutative the sheaf constructed above reduces to the usual struc-
ture sheaf.

If M is an R-module the support of M, denoted Supp M, is the set of those
[V] € Spec R such that M is not V-torsion. (For definitions and basic properties
on torsion theories, see [6].) When R is commutative, the above definition of the
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support of M agrees with the usual definition.

ProrosiTiON 3. If Supp M is the disjoint union of relatively open sets
X,, X,, then M has a unique decomposition, M = M, ® M,, where X; =
Supp M;,i =1, 2. In particular, if Spec R is the disjoint union of open sub-
sets X;, X,, then R =R, ® R,, where each R, is a two-sided ideal and Spec R
is naturally homeomorphic to X;, i =1, 2.

If M is an R-module we define a presheaf of modules over Spec R by letting
for an open set U, the module of sections over U be My, where My, is the quot-
ient module of M with respect to the torsion theory determined by V¢, with the
obvious restriction maps.

THEOREM 4. If each open subset of Spec R is compact, the above pre-
sheaf is a sheaf and the construction yields a functor from the category of R-
modules to the category of sheaves of modules over Spec R.

If R is commutative the sheaf constructed above reduces to the usual sheaf.

A ring map ¢: R — S between noetherian rings R and S is special if for
each indecomposable injective S-module V, E[, V'] is the direct sum of pairwise
isomorphic indecomposable injective R-modules. If ¢ is special there is a natur-
ally defined map ¢*: Spec S — Spec R such that ¢*: [(V'] — [ W] where W
is an indecomposable direct summand of E[ V']. We do not know under what
conditions ¢* is continuous; however, ¢* does have a property that is closely related
to continuity.

We say that a subset Y of Spec R is closed under generization if Spec R\Y
has the property that it contains the closure of each of its points. So open sets
are closed under generization.

THEOREM 5. Assume that ¢: R —> S is special. If Y C Spec R is closed
under generization, then ¢$*~1(Y) C Spec S is closed under generization.

A ring map ¢: R — S is an extension if S is generated as left R-module by
the set {c ES|cod(r) = ¢(r)c,allr ER}.

PROPOSITION 6. If ¢: R — S is an epimorphism in the category of rings,
then ¢ is special. If ¢ is an extension, then ¢ is special.

Several topologies on Spec R have been defined in [4], [1], and [S]. None
of these agree with the topology defined above. For example, if R is the ring of
n x n upper triangular matrices over a field, then Spec R has n points. In each of
the topologies in the listed references, Spec R is a discrete space, while our topol-
ogy is the order topology on a linearly ordered set. Our topology is very like that
given in [3] where, as in the other references, the noetherian condition is not
assumed. We do not know if the topology defined in [3] agrees with our topol-
ogy for arbitrary left noetherian rings.
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An expanded version of this paper, with proofs and examples, will be pub-
lished elsewhere.
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