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1. Introduction. The Selberg trace formula for SL(2, R) is commonly 
understood to be a non-Abelian analog of the Poisson summation formula. 
The formula arises from letting a Fuchsian group T act on the upper half-plane 
H and contains four basic contributions: identity, hyperbolic, elliptic, and 
parabolic [2, pp. 95—108], [3, pp. 72—79]. Because of its possible number-
theoretic applications, it seems only natural to calculate the trace formula ex­
plicitly for various congruence subgroups of SL(2, Z) and see what happens. 

From the general theory, one knows that the parabolic (or arithmetic) 
contribution will be Tr(M), where 

M = i £ hiryüXsWsT1 dr + VA{I - $(£)] A(0) 
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We use here the notation of [2, p. 108] and write s = Vi + ir. <ï>(s) is the so-
called Eisenstein matrix. M will therefore be a C x C matrix, where C = the 
number of inequivalent cusps. For the other three contributions, see [2, pp. 
95-108]. 

The groups T we want to consider are::SL(2, Z), V0(N)9 rt(N), T2(N). 
These last three groups are defined by the congruence conditions: 

C K H H Ï) mod N. 

We will assume that N > 3 is square-free. In order to evaluate the parabolic 
contribution for each group, one must first calculate *(s) and then Tr(M). The 
necessary computations are quite lengthy (for large N). 

2. The trace formulas. Because we are interested only in the "arith­
metic" part of the formulas, we need only give Tr(M). We introduce the 
number-theoretic tunctions 4>(n), A(n), co(n) as in [1, pp. 233, 253, 354] and 
let e = ±1. 

Case SL(2, Z). C = V. 

Tr(M) =5(0) In (w/2) - ^ / ^ A(r)|Ç(V4 + ir) + Ç ( l + ir)} dr 

» = i n 

Case rQ(N). C = 2w(JV): 

Tr(M) = C Tr(MSL(2>z)) - Cg(0)In N - C £ £ ^ - * ( 2 ln «). 

Oner, (A/). C = &ft7V)2w(7V): 

Tr(M) = (l/8)fc(0)2 w(Ar>[«(A0 - 2] + Cg(0)[ln(irl2) - (3/2)lnJV] 

- sC. *(r){f °*+/r)+£(i+4* 
+ c[2 Z ^ ^ I n n ) ] 

pIJNT \P/\ L n=€mod(N/p); n 

L n=pr J 
where F(k) = %0(fc) when A: > 2, and F(l) = 1. 



754 D. A. HEJHAL [July 

CaseT2(N). C = mplN(p2 - 1): 

Tr(M) = (l/8)fc(0) n (P + O • M M - 21 + QK0)[ln(ir/2) - 2 In iV] 
ptfV 

L «=emodJV n J 

p|iV/i=emod(iV/p); ^ ' w 

n—pr J 
Due to limitations of space, we will omit the formulation of the $(s) 

matrices. The case F = SL(2, Z) can be found in [2, p. 46]. 

3. Connections with analytic number theory. Trace formulas are impor­
tant for several reasons. One reason is that they exhibit a very striking struc­
tural similarity to certain explicit formulas of prime number theory (especially 
Weil [5] ). Thus, in the notation of [2], we have 

E m - »({) * " (4)- *<»b •+hi", wf (4+2") * 

where XA +17 are the nontrivial zeros of f(s) (of course 7 E C). One might 
possibly hope to interpret Weil's formula as actually being a trace formula (or 
else limit thereof). This would provide some important insight into the Rie-
mann hypothesis. 

If the formulas of §2 offer any clue at all, we see that there will be 
several important obstructions: 

(a) 2 In « and n appear in place of In n and \fn\ 

(b) the A(n) terms appear with a " + " sign instead of a "-"; 

(c) the identity and hyperbolic contributions to the trace formula signi­
ficantly "overshadow" the parabolic (in magnitude). 

4. Hecke operators. As mentioned in [3], [4], one can also develop a 
trace formula for Tr(ML), where M is a modular correspondence and L is the 
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usual integral operator Lf(z) = fHk(z, w)f(w)dw. The case of T = SL(2, Z) 
and M = T (the usual Hecke operator) can be computed explicitly. The only 
serious difficulty arises from matrices r = (££ ) £ GL(2, Z) having ,4/) - Z?C 
= p and 14 + D\ = p + 1. The corresponding contribution to Tr(7LZ,) is 

«On p)\p* In p + lp* In 7T + 2p* ln<p* - p*)] - J 1 ^ £ M*. P " 0 

- VipHiO) + 2pÂ £ ^ 2 i b(2 In « - In p) + #(2 In n + In />)] 

n = l 
, y2r°° , s e" + 1 . 

- ^ ƒ_"_ *(r)[p*+,> + p*""] Ç-04 + fr)dh 

One finds here a certain resemblance to the formulas of §2. As a result, the 

obstructions (a)—(c) still seem to apply. 

5. Detailed proofs will be published elsewhere. 
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