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1. Introduction. The singularly perturbed boundary value problem 

(1.1) ey"=f(t9y9y'9e), 0 < f < l , 

(1.2) y(P,e)=A, y(l,e) = B9 

for e a small positive parameter, has been studied extensively under various 
linearity restrictions. See, for example, [3] and [4] , and the references there­
in. However, two principal assumptions have been that the corresponding 
reduced problem 

0 = / ( f , u, w',0), 0 < f < l , 
(1.3) 

K(l)=tf, 

has a solution u = u(t) of class C^[09 1] and that in a suitable tube around 
u, f ' = df/dy' < - k, for some positive constant k. This latter assumption 
excludes the occurrence of turning points and makes the function u a stable 
root of (1.3). 

Under additional assumptions, by means of several asymptotic methods, 
the existence of a solution y = y(t, e) of (1.1), (1.2), for each e sufficiently 
small, can be deduced and this solution can be shown to satisfy an estimate 
of the form 

y(t, e) = i*(f) + 0(\A - u ( 0 ) | e x p [ - t o € - 1 ] ) + 0(e), 0 < f < l. 

Here 0 denotes the standard Landau order symbol. The exponential term 
v(t, e) = exp [— kte~x] is a boundary layer function, in that u(0, e) = 1 and 
v(t, e) —* 0 as e —> 0 + for t > 0. 

2. Statement of the problem and main result. Consider the more 

general boundary value problem 

(2.1) a(t9 e)y" = ƒ(*, y9 y\ e), 0 < t < 1, 
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(2.2) y(0,e)=A, y(l,e)=B, 

and the corresponding reduced problem 

(2.3) a(t, 0)u" = f{t, u, u',0), 0 < t < 1, 

(2.4) «(1) = B, 

where a(t, e) = ait, 0) + 'ait, e), «(r, e) > 0 and a(r, e) = 0(e), for (r, e) G 
[0,1] xCO.eJ . e jX) . 

THEOREM. Assume (1) r«e problem (2.3), (2.4) Aas a solution u = 
u(t) of class C(2)(0, 1) O C[0, 1] ; 

(2) the functions f, ft, f , f • are continuous in R: 0 <:t < 1, \y -
u(t)\ <d, \y'l< o», 0 < e < e^d, et > 0); 

(3) there is a function b = b(t, e) > 0, for (t, e) G [0, 1] x (0, e j , 
such that fy' < - b(t, e) in R; 

(4) there is a constant / > 0 such that fy(t, y, u'(t), e)> I for f € 
(0, 1), \y - u{$)\ <dand0<e<el; 

(5) r(a(t, e), bit, e), p) = b2a~ \p - p2) + aiba~ l)'p + I > 0, /or 
some constant p > 0 ancf (r, e) G (0, 1) x (0, et ] ; 

(6) \fit,y,y',e)\<<K\y'\),forte[0,\},\x\<M, \y'\<<*>and 
0 < e < Cj, with 4> positive, continuous and satisfying f°° s(/>~1is)ds = °°; 

(7) fit, uit), u'it), e) =fit, uit), u'it), 0) + fit, e),for it, e) G (0, 1) 
x(0, e j ; 

(8) there is a function y = fit, e) such that y' < 0 and 
(i) ait, e)y" + bit, e)y' -ly< a(f, e)«"(r) - 7ft e), /or 

( f , e ) e ( 0 , l ) x ( 0 , e 1 l ; 
(ü) 7 > 0 and 7 = Oin), V = Vie) ~* 0 as e —*• 0+, for it, e) G 

[0,1] x ( 0 , e , ] . 
Then for each e, 0 < e < ev there exists a solution y = y it, e) of 

(2.1), (2.2). In addition, 

yit, è) = uit) + 0(^A - M(0)|exp[- p ƒ J ( f cr 1 )^ e)ds]) + Oiv), 

0<t < 1 . 

The Theorem is proved by constructing Nagumo-type lower and upper 
solutions a, 0, respectively. See, for example, [2]. As an illustration, if 
«(0) >A,the functions 

ait, e) = uit) - (u(0) - ^)exp l- p j^ba'1^, e)dsj - yit, e), 
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Mf, e) = w(r) + y(t, e) 

satisfy the required inequalities. 

3. Discussion. The Theorem includes a result like that mentioned in the 
Introduction, in that for a(tt e) = e and b(t, e) = k>0, 

r(a(t, e), b(t9 e), p = 1) s / > 0. 

Further, the assumptions that u is of class C ^ [ 0 , 1] and ƒ = 0(e) lead to 
the choice of yit, e) = ea, for a a sufficiently large positive constant. 

A more interesting situation occurs when a(t, e) = (t + e)2 and bit, e) = 
fc(f + e), fc > 0. Then T(a(t, e), Z>(f, e), p) = 0, provided p = - rk~\ where 
r is the negative root of the indicial equation r(r — 1) 4- kr - I = 0. If u is 
of class C (2)[0, 1] and ƒ = 0(e), then again y = eo, o > 1, satisfies assump­
tion (8). However, with this choice of a and £, there can exist functions u 
which only belong to C(2)(0, 1) n C [0, 1] ; as an example, consider the lin­
ear problem (t + e)2^ " + 2(f + e)y' -y = 0, 0 < t < 1. Then the function 
y is no longer of order 0(e); instead it satisfies y —• 0 as e —• 0+ , for t G 
[0, 1], as follows from the computation in assumption (8). In addition, the 
boundary layer function is of algebraic type, for 

expT- pff
o (ba~l)(s, e)ds\ = exp \rk~x ƒ J *(s + e)~*ds\ =(14- te~l)r. 

Finally, the result of §2 can be applied to problems in which 
fy if, y, uit), e) is bounded and also problems in which b(t, e) has a multiple 
character, for example, bit, e) = k 4- 2e(f + e 2 ) - 1 . Such functions bit, e) 
are briefly discussed in [1] with ait, e) = e. 

BIBLIOGRAPHY 

1. W. Eckhaus, Matched asymptotic expansions and singular perturbations, North-
Holland, Amsterdam, 1973. 

2. L. K. Jackson, Subfunctions and second-order ordinary differential inequalities, 
Advances in Math. 2 (1968), 307-363 . MR 37 #5462. 

3. R. E. O'Malley, Jr., Introduction to singular perturbations, Academic Press, 
New York, 1974. 

4. W. R. Wasow, Asymptotic expansions for ordinary differential Equations'. Trends 
and problems. Asymptotic Solutions of Differential Equations: Equations and Their Appli­
cations (Proc. Sympos., Math. Res. Center, U. S. Army, Univ. Wisconsin, Madison, Wis., 
1964, Wiley, New York, 1964, pp. 3 -26 . MR 29 #3724. 

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK,UNIVER-
SITY, NEW YORK, NEW YORK 10012 


