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The study of multiplier theorems for Fourier expansions led quite 
naturally to the study of multiplier theorems for other orthogonal expansions— 
in particular the ultraspherical. In this setting several results were proved 
[I] » P] » [5] —but each result was the son of a Fourier theorem. Was there 
an "ideal" theorem that contained these? In the ultraspherical setting—there 
is. In order to find this "ideal" theorem two questions had to be answered: 
(a) what were the best possible boundary results, and (b) what method of 
interpolation would give intermediate results between these boundary results? 

The answer to question (a) involves an extension of the Littlewood-Paley 
methods to this setting (Theorem A) and then the establishment of the best 
possible result for q = 2 (Theorem B). 

The answer to question (b) involves: First, the definition of a continu­
ous scale of Banach spaces that contain all of the standard multiplier sequences 
as special cases: Second, the proof that any such sequence is the restriction 
to the integers of a function in a local Sobolev space (Theorem C): Third, a 
method of interpolation for such spaces, and the proof of local stability for 
these spaces (Theorem D). Finally, various special calculations and interpola­
tion theory yield multiplier theorems for parameters (a, 1/q, 1/p) lying in a 
convex region that includes theorems of Marcinkiewicz type, Hormander type, 
and Michlin type as special examples (Theorem E). 

From the perspective of Fourier analysis some of these results are quite 
provocative. For example, Theorem E suggests Hormander's multiplier theorem 
with the number of differences =n/2. Another example is Theorem D 
which suggests a method of unifying the two types of multiplier theorems in 
Stein [4, Chapter IV]. 

Define the following Littlewood-Paley functions: 
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iThe proofs of these theorems will appear as a future Memoir of the A.M.S. 
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*.</. •) = ( f 0 W k ö)l2 llogrl2-1 if-)1'2, 

S(f, 6) = ( j j |dx/(r, ° ) | 2 * Xl_r(ô) (1 -r ) - 2 X Idr)1/2, 

* # * e> = (Jo | d i / ( r ' ° ) | 2 * *"' ( 0 ) ( 1 " r )_2X ldr)112' 

where the convolution *, the measure dfix, the norm ||-|| , and the Abel 
means ƒ (r, 0) are those associated with ultraspherical series (see [3] ), where 
da is a fractional differential operator, xe(0) = 1(=0) if 0 < e(>e), and 
*„,,(<?)= { ( l - r ) / ( l - r + 0)}"<2*+1>. 

THEOREM A. Let f e L2 n Zp a«d ƒƒ ̂  = 0, then 

\\g*(f)\\p < Ap\\f\\p, 2 < p < - , v > 1, 

ga(f,e)<Aat0gp(f,e), /?>«, 

s(/j)<>i4/ )o). 

We need the following spaces of sequences and functions. 
Define {mn} S nt(q, k) if 

(a) sup„|m„|<C1, 

(b) SXXVM(UM)22
M

M|B*A*mJ* < <3-

Let <p(x) be a Ĉ ° function which is used to cut off the support of other 
functions in a smooth way. Let <pk(x) = <p(x - k) be a translate of <p(x). 

Define m(pc) G S(#, a), a local Sobolev space, if $upk\\ipk(x)m(2x)\\ < 
c. 

(We assume L£ is the Sobolev space when k is an integer, the Bessei 
potential space elsewhere. See Stein [4] for notation.) 

Define {mn} G s(q, a) if there exists an m G S(q, a) such that m(ri) = 
mn. 

The spaces s(q, a) are the scale of Banach spaces that contain the mul­
tipliers of Marcinkiewicz, etc. as special cases. 

THEOREM B. If<x>\ + ttand {mn} G5(2, a) f~ 2cnI* and Tf ~ 
^ / ^ , f a \\m\p<Cp\\f\\pforaU 1 < p < ~ 

THEOREM C. m(q, k) = s(q, k). 
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If [ > ] s denotes the complex method of interpolation of Calderón [2], 
then a substitute is needed for the idea of stability, which would require that 
[S(q0, a 0) , S(q 1? oct)]s = S(q, a), since this may fail for these nonreflexive 
spaces. Thus we have the following 

THEOREM D. Local stability. 

S(q, a ) n C c C [S(q0, a0) , S(q1,a1)]s C S(q, a). 

Define Es to be the subset of (a, \\q, \\p) space for which S(q, a) 
defines a strong type p-p multiplier by restriction. 

THEOREM E. The set Es contains the interior of the convex hull of the 
following endpoint or boundary results: 

(a) aq = 1, a > 0, 2 < q < °°; 
(b) 2 < q < oo, a > X + %, 1 < p < «>; 
(c)q= l , a = [X+ 1] + 1, K p < o o ; 
(d) q = 1, a = 1, \l/p - 1/2| < 1/2(2X + 1). 

That the results are best possible for otq > 2X + 1 can be given by a 
specific construction. 

REMARK 1. In order to show that the convex region gives the best 
possible result for all (a, l/q, l/p), an improvement must be made in the 
theorem of Bonami and Clerc [1]. We conjecture that the following multip­
liers of Marcinkiewicz type is true: If {mn} G s(l, a), then \\Tf \\p < C\\f\\p 

for all K p < o o i f a > X + fc. 

REMARK 2. These results have been stated in terms of Sobolev spaces, 
but there is an analogous theory for other smoothness classes (for example 
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