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Let 12 be the set of n by n matrices with complex elements, let R denote 
the set of reals, and let R0 denote the interval [0, f0) for some t0 > 0. We 
consider the differential relation 

0 ) 0 G z ' - / ( u ) , teR0 

where z(f) G 12 and ƒ is a function from R0 x 12 to subsets of 12. The equa­
tion can be interpreted in two senses: Either z is absolutely continuous and 
the relation holds almost everywhere, or z is continuous and the relation holds 
except in a countable set. 

A function 0(r, p) from R0 x R to R is a uniqueness function if the 
upper solution of the equation 

(2) D+ p = 0(r, P), tER0; p(0) = 0 

is p = 0. Here D+ denotes the upper right Dini derivate, though other dériv­
âtes could be used just as well. The equation (2) is interpreted in the same 
sense as (1). 

We use |£| for the Euclidean length of the complex vector £, so that 
l£l2 = £*£. For z G 12 a norm and Kamke norm are defined respectively by 

llzll = suplzEl, [z] = sup Reft*zö, (|*| = 1). 

We say that ƒ satisfies a uniqueness condition if there exist an e > 0 and 

a uniqueness function 0 such that 

x Gf(t, u\ y Gf{t, v), \\u - v\\< e 

together imply 

[{u - u)*(x -y)] < In - ull0(f, lu - ull). 

The hypotheses and conclusions of our theorems hold for t €R0 and, for 

simplicity, all coefficients in the examples are integrable. 
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Invariance of the unit ball. If llz(0)ll < 1 implies \\z(t)\\ < 1 for solutions 
of (1), it is said that the unit ball is invariant. This is the case (and the proof 
is easy) if there exists e > 0 such that the three conditions 

1 4- e > Ibll > 1, w e f{t, v), v = z(t) 

imply [v*w] < 0. The following theorem has a uniqueness requirement on ƒ, 
but in other respects the hypothesis is much weaker than that above. 

THEOREM 1. Let f satisfy a uniqueness condition. Suppose further that 

there is some w G f\t> v) such that the three conditions 

l b II = 1 , 7? = V%, % = L>*7? 

together imply Re(ï?*w£) < 0. Then the unit ball is invariant. 

The uniqueness condition is needed only relative to points v on Hull = 1 
and u on 1 < llwll < 1 4- e with u = z(t). For proof, it is sufficient to show 
that 

/0x t. . ~ lb + cavil - Hull ^ -
(3) hm inf < 0 

and the result follows from known invariance theorems [1], [2], [3], [5] as 
extended in [6]. Because of its relation to (3), the hypothesis Re(T?*w£) < 0 
under the restrictions of Theorem 1 is referred to as the tangent condition on 
llzll = l. 

For example, let z satisfy the Riccati equation z' = a + bz + zd + zcz. 

Theorem 1 immediately gives a result of Reid [7] and the author, to the effect 
that the unit ball is invariant if 

(4) RC(T?*J{ + v*bv + ï*d£ + $*ci?) < 0 for |£| = |T?|. 

It is seen, incidentally, that the Riccati equation satisfies the tangent condition 

for llzll = 1 if it satisfies the tangent condition for z*z — 1. 

Theorem 1 applies with equal ease to equations of higher degree. For 

instance let 

z = ax 4- bxz + zdx + zcxz 4- zz*a2z*z 

+ zz*b2z + zd2z*z 4- zz*zc2zz*z 

where the coefficients are integrable. Then invariance of the unit ball follows 

from (4) with 
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a = ax + a2, b = bx + b2, c = cx + c2, d - dx + d2. 

Invariance of the order cone. We use the order induced by quadratic 
forms, so z < 0 holds if and only if [z] < 0. Thus [z] is one of the Kamke 
norms which generate the order relation [4]. The order cone is said to be 
invariant if z(0) > 0 implies z(f) > 0 for t G R0. 

THEOREM 2. Let f satisfy a uniqueness condition. Suppose further that 
there is some w G f(t, u) such that the two conditions 

v + v* > 0, (p + u*)£ = 0 

together imply |*(w + w*)£ > 0. Then the order cone is invariant. 

For proof, note that the functional generating the order cone are of the 
form 0£, where <p%(z) = Re(£*z£) and III = 1. It is possible to show that the 
quasimonotony condition of Volkmann [8] holds under the hypothesis of 
Theorem 2; hence by [5] the tangent condition holds on the order cone; and 
Theorem 2 follows from [1], [2], [3], [5] as extended in [6]. For single-
valued functions Theorem 2 also follows from [4], Theorem 2; note that 
\p] = 1, [- p] = -1 where p is the identity matrix. 

Here again, v and w are somewhat more restricted than stated in the 
theorem. In particular if the differential equation is Hermitian, so that the 
solution satisfies z = z* and f(z, t) = f(z, t)*9 then the hypothesis is needed 
only when u = v* and w = w*. 

As a simple illustration let z' > bz + zb* + zcz + zcz*. Then z(0) > 0 
implies z{t) > 0; compare Reid [7]. If Tu = u - g(t, ü) monotony in the 
sense of Collatz can be deduced by applying Theorem 2 with f(t, z) = 
g(t, u + z)- g(t, ü). For example let Tu = u - ub - b*u - ucu where u*c* = 
uc. Then Tu < Tv and u(0) < v(0) implies u(t) < v(t). Note that the choice 
g(t, ü) = u2 is permissible here though specifically excluded in [7, Theorem 
6.1]. All these applications of Theorem 2 extend to equations of higher degree 
and to the comparison of two operators, as in Txu < T2v. 

Cayley transforms and periodic solutions. It is not difficult to show that 
the transformation 

w = (z- l)(z + I ) " 1 , z = (1 + w)(l - w)-1 

effects a formal conversion of either Theorem 1 or 2 into the other. Thus 
the two theorems can be regarded as being in reality a single one, even though 
they have their roots in two rather distinct historical traditions. This observa-
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tion gives a unified approach to a substantial and diverse literature. 
The Cayley transform also has an interesting bearing on periodic solutions. 

Let f(z, t) have f-period co. If the unit ball is invariant then, subject to mild 
continuity conditions, the transformation z(0) —• z(co) has a fixed point in 
HzII < 1, and a periodic solution exists. A slightly sharper hypothesis ensures 
\\z(t)\\ < 1 for t > 0 in Theorem 1, so that the fixed point is also in HzII < 1; 
this is sometimes desirable for technical reasons. In the case of a Riccati equa­
tion the transformation z(0) —• z(co) is a linear fractional transformation, the 
theory of fixed points is simpler than in the general case, and the argument 
extends to equations in which the unknowns are operators on a Hubert space. 

This discussion gives existence of a periodic solution under conditions in 
which the main hypothesis is that of Theorem 1. However the argument does 
not apply to Theorem 2, because the set z > 0 is not compact even in the 
finite-dimensional case. But by a Cayley transformation z —• w we can get a 
periodic solution w from Theorem 1, and transforming back gives a periodic 
z. Hence, there are theorems asserting existence of a periodic solution in which 
the main hypothesis is that of Theorem 2. 
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