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A STRONG NONIMMERSION THEOREM FOR R/>8/+ 7 

BY DONALD M. DAVIS AND MARK MAHOWALD l 

Communicated by Edgar Brown, Jr., August 13, 1974 2 

In this paper we shall sketch the proof of a nonimmersion theorem for 
real projective spaces of dimension 8/ 4- 7 which is conjectured to be best 
possible. Details will appear elsewhere. 

THEOREM. Let a(ri) denote the number of Vs in the binary expansion 

of n. Let 

i 

«») = 

7a(n) if <*(n) s 1, 2(4), 

2oc(n) + 1 if Oi(n) s 0(4), 

2ot{n) + 2 if Oi(n) = 3(4). 

If n = 7(8), then RPn £ R2n~^n\ 

This result was announced in [4] but difficulties [2] were found in the 
argument sketched there. It was conjectured in [4] that if n = 7(8), then 
RPn ci R 2 " - 0 ( W ) + 1 . Using techniques of [1] we have proved these immer­
sions when <x(ri) = 5, 6, 8, or 9 (unpublished), thus establishing the precise 
immersion dimension in these cases. 

It is well known that the theorem is equivalent to showing that the map 
RPn - ^ > BSp which classifies (2L - n - 1)£„ does not lift to BSpn_Hn) 

[1] (where L is any sufficiently large integer). We prove the nonexistence 
of this lifting by showing that a ôo-secondary obstruction is nonzero with 
zero indeterminacy. 

As in [5] we define bof to be connective £2-spectrum whose 
(8A: + 4 -/)th-space is BO(Sk + 4, «>) localized at 2. Let %\bo-^bo\ 

be the map inducing the Adams operation i//3 - 1, and let bJ denote the 
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fibre of 0. Let B^ = BSpN A BSp bo denote the space which was called 
E# in [1], and similarly define B^ - BSpN A BSp bJ. 

In stable dimensions (< 2A0, using techniques of [1], [5] and [6], we 
can form the first two stages of a fto-resolution of VN —• BSpN —• BSp 

BJ
N 

VN Nbo^B% — • VNA bo\ 

ƒ I co 
RPn -*-• BSp — • 2 VNM>o, 

where cx ° i = 1 A 0. 
Let N = n - /?(«). The theorem is proved by showing that there is a 

lifting of ƒ to B^ which does not lift to BJ
N, and that the indeterminacy 

(1 A 0)*: [RP", F^ A M —• [RPn, VNAbo*] is zero. To prove the non-
lifting to BJ

N we construct an (n - l)-modified Postnikov tower [3], BJ
N —-* 

# r —> ••• — ^ —+BSp and show using [1, Theorem 1.8] that RP""1 

lifts to £'a(„)_3- Using the Serre spectral sequence we show that the map of 
7-connected coverings BJ

N(%, °°) —» Ea^n^3(S, «>) is induced through di­
mension n - 1 by a map Ea(n)JS, oo)("-D JL* 7, and if ƒ'• W>w~1 —• 
^a(«)-3(^» °°) i s a lifting, then we show that cf is nontrivial, so ƒ does 
not lift to 2?^(8, °°). This is then used to show that a lifting to B^ does 
not lift to B^. 
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