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This is a research announcement of results [Al] the full details and 
proofs of which have been submitted for publication elsewhere. We study the 
structure of m dimensional subsets of Rw which are well behaved with re­
spect to deformations of R" and also show the existence of such sets as 
solutions to geometric variational problems satisfying various constraints. 

Suppose, for example, one is given several positive numbers av a2, • • *, 
aN and is asked to find disjointed regions Av A2, • • • , AN in Rn such 
that At has volume at for each i and the n - 1 dimensional area of 
S = (J{Boundary(At): i = 1, • • • , N} is as small as possible. For n = 3 
this is a common formulation of a variational problem associated with com­
pound soap bubbles. As a variant of this problem one could set A0 = Rn ~ 
(J i Closure^ z.) and attempt to minimize the sum of the weighted areas of 
the various interfaces {Boundary^ t) n Boundary^ )}z- ., or perhaps the 
weighted integrals over these interfaces of various geometric integrands. For 
n = 2, 3 such minimal partitioning hypersurfaces have been the subject of 
numerous papers in mathematics, physics, ajid especially biology for the past 
several centuries (see, for example, [TD, Chapter 4, pp. 88—125] for a discussion 
and references). Among other things we give the first mathematical proof of 
the general existence of such surfaces. The methods are representative of 
those required to show the existence and regularity of solutions to a variety 
of geometric variational problems with constraints; e.g. capillarity problems, 
minimal surfaces avoiding obstacles, variational problems with partially free 
boundaries, etc. 
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The following are the main themes of [Al] . 
Comparison surfaces obtained by deformations. The defining properties 

of a surface S which is either (7, 8) restricted or (F, e, 8) minimal as 
defined below are based on comparisons of a piece S n W of the surface 
with its deformed images 0(5 n W) under lipschitzian mappings 0: Rn —• 
Rn', here W — {x: 0(x) =£ x}. We develop an extensive repertoire of such 
lipschitzian deformations, including a partial varifold analogue of the slicing 
theory of [F, 4.3], in order to establish various geometric properties of such 
sets. In particular we do not assume the existence of a boundary operator 
such as is present in the theory of integral currents [F, 4] ; indeed, in many 
of the phenomena to which our results are applicable there seems no natural 
notion of such an operator. Another advantage of the deformation approach 
is that the methods are easily adaptable to geometric variational problems in 
a homotopy setting [A2]. 

(7, 8) restricted sets. Suppose S CRn is locally compact and of 
finite m dimensional measure, B C Rn ~ S is closed, 1 < y < °°, and 
0 < 8 < °°. One says that S is (7, 8) restricted with respect to B provid­
ed Hm(S) < yHm[(KS n &0] whenever 0, W are as above, W C\ B = 
0(RO n B = 0 , and diam [W U 0(R/)] < 6; here Hm denotes hausdorff m 
dimensional measure over Rn. Incase 7 = 1 , a (7, 8) restricted set 
locally minimizes m dimensional area (and therefore is almost everywhere a 
real analytic minimal submanifold of Rn [A3, 1.7]). Intuitively one might 
wish to regard a (7, 8) restricted set as being within factor 7 of locally 
minimizing m dimensional area. For example, for each i = 1, • • • , N, 
Boundary (/I,.) is (7, 8) restricted for appropriate 7, ô whenever Ax, • • • , 
AN is a solution to a reasonable partitioning problem as above. Among the 
main properties of a set S which is (7, 8) restricted are the following: (i) 
S is (Hm,m) rectifiable [F, 3.2.14(4)], (ii) there are positive lower bounds 
and finite upper bounds for the density ratios of Hm L S at all points of 
spt(Hm L S) ~B for all suitably small radii, and (iii) S can be approxi­
mated in a very strong sense by a diffeomorphic image of a finite polyhedral 
complex of dimensions m and smaller. Frequently geometric variational 
problems give rise to varifold solutions V such that sptllFll is a (7,6) 
restricted subset of Rn, this fact depending only on upper and lower bounds 
for the integrand in question and not, for example, on its ellipticity [A3, 1.2]. 
Examples show that an additional hypothesis is required to insure a condition 
such as V = Isptll HI |; the hypothesis of ellipticity is sufficient to show this 
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(compare [A2, 14(2)]) as is the volume constraint in crystalline type problems 
[T] although the methods of proof in these two cases are totally distinct. 

(F, e, ô) minimal sets. Suppose G(n, m) denotes the grassmann mani­
fold of all unoriented m planes through the origin in Rn, F: Rn x G(n, m) 
—* R+ is continuous, e: R+ —> R+ is nondecreasing with limr;oe(r) = 0, 
and 0 < 6 < °°. One says that 5 is (F, e, 8) minimal with respect to B 
provided 5 is (7, ô) restricted with respect to B (for some 7) and 
Fp(S n W) < [1 + €(r)] Fp[0(5 n W)] whenever 0, W are as above, p G 
Snw,r = diam[W U <j>(W)] < Ô, and 

FP(T) = f /^?, Tanm(Hm L T, *)>*Hmx for T = 5 n Pi/, 0(5 n W). 

Typically if 5. is a (7, Ô) restricted set which is a solution to a geometric 
variational problem with constraints associated with F and if F is lipschitzian, 
then almost all of 5 will be (F, e, ô') minimal with respect to a suitable B; 
in particular, the deformations 0 need not respect the constraints. Somewhat 
surprisingly the choices of e, 6', and 5 seem to depend on the particular 
solution and are not determined a priori. The most important fact about 
(F, e, ô) minimal sets and the single most important result of [Al] is the 
following. Suppose F is elliptic and of class 3, 

J 1 r ( 1 + t t ) e ( 0 1 / 2 * < 0 0 for some 0 < a < l , 

and S is (F, e, 6) minimal with respect to B. Then there exists an open 
set UCRn such that Hm(S ~ U) = 0 and SCiU is a continuously differ-
entiable m dimensional submanifold of Rn. In case 0 < a < 1 then 5 n 
U is locally holder continuously differentiable with exponent a. These hypo­
theses and conclusions, incidentally, do not imply that 5 n U locally can be 
represented as the graph of a function which satisfies any of the various euler 
equations associated with F. For example, if M: Rn x G(n, m) —» {1} 
denotes the m dimensional area integrand and if 5 is any class 2 compact 
m dimensional submanifold of Rn, then 5 is (M, e, ô) minimal with re­
spect to 35 whenever ô is sufficiently small and e is the restriction of a 
linear mapping of sufficiently large norm. 
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