
BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 80, Number 6, November 1974

ADAPTIVE QUADRATURE: CONVERGENCE OF
PARALLEL AND SEQUENTIAL ALGORITHMS

BY JOHN R. RICE1

Communicated by A. S. Householder, May 28, 1974

Adaptive quadrature algorithms dyamically choose the weights and
abscissae in the formula

/ = 1

to adapt their estimates to the particular nature of the integrand f(x). Within
the past five years experimental evidence has appeared to suggest that adaptive
quadrature algorithms are significantly superior to traditional quadrature form­
ulas because they have a much wider domain of efficient applicability with
little sacrifice in computational effort.

A metalgorithm is an abstraction representing a large class of algorithms
and is used to discuss and analyze the properties of adaptive quadrature algor­
ithms. A novel feature of these algorithms is the important role that data
structures (for the interval collection) play in their behavior. A study of reason­
able selections of components for the metalgorithm shows that there are from
1 to 10 million potentially interesting, significantly distinct adaptive quadrature
algorithms. This situation illustrates the extreme difficulty of the common
problem of selecting the "best" algorithm for a particular computation.

Our purpose is to announce convergence results for a variety of adaptive
quadrature algorithms2 (including all 10 million mentioned above). Roughly

AMS (MOS) subject classifications (1970). Primary 65D30.
!This work partially supported by NSF grant GP-32940X.
2This announcement is a summary of results and analysis contained in the following:

A metalgorithm for adaptive quadrature, CSD-TR 89, Computer Science Department,

Purdue University, March, 1973, 43pp. J. Assoc. Comput. Mach. (to appear).

Parallel algorithms for adaptive quadrature: Convergence, CSD-TR 104, Computer

Science Department, Purdue University, September, 1973, 18pp. Proc. IFIP 74 (to appear).

Parallel algorithms for adaptive quadrature II; Metalgorithm correctness, CSD-TR

107, November, 1973, 28pp. (to appear).

Parallel algorithms for adaptive quadrature III; Program correctness, CSD-TR 112,

March, 1974, 52pp. (to appear).
Copyright © 1974, American Mathematical Society

1250

CONVERGENCE OF PARALLEL AND SEQUENTIAL ALGORITHMS 1 2 5 1

speaking, these theorems state that adaptive quadrature algorithms are as effic­
ient and effective for badly behaved integrands (finite number of singularities)
as comparable traditional quadrature formulas are for well-behaved integrands.
This result explains the experimentally observed superiority of adaptive algorithms.

The key to the analysis is the fact that an algorithm generates a tree of
intervals as it adaptively subdivides the elements of the interval collection (sub­
division is usually into two equal halves). This subdivision naturally decreases
the error in the quadrature estimates, and we abstract the process as follows:
We are given:

A Numbers e > 0 and 7, j 3 < l .
B An empty set M' and a set M of intervals I with associated num­

bers r?(/). M contains a distinguished interval I*.

C A process P. I —> (IL, IR) which divides / into left and right sub-
intervals IL and IR such that:

(i) If ƒ = /* then r\(IL) = <n(IR) = P*v(I) and /*<-ƒ/ , or I*+-IR

(ii) If / ^ / * then n(IL) = v(IR) = y*n(I).

We now define a partition algorithm :
For IE:M do

P: / - > (IL, IR)
If (v(IL) < e) then IL E M' else IL e M
If (<q(IR) < e) then IR E M' else IRE M

This algorithm terminates when M is empty and the following theorem esti­
mates the resulting size of M'.

THEOREM 1. Consider the partition algorithm with ft M and rj(I) for

I EM fixed initially. Let F(y, d) be the size of M' when the algorithm

terminates and we have

F (T , e)=0(e 1 / ,° 8^).

It is believed that this result is the key to the analysis of adaptive algorithms
of other types (e.g., curve fitting, solutions of integral or differential equations)
as well as for quadrature.

To apply this result, we introduce two assumptions of a traditional math­
ematical nature.

ASSUMPTION 1 (Integrand). Let f(x) have singularities S = {^1/ =
1, 2, • • • , R < °°} and set w(x) = llf^^x - s^.

(i) If x0 &S then f^p\x) is continuous in a neighborhood of x0.

1252 J. R. RICE [November

(ii) There are constants Kf a and p > 2 so that

\f^(x)\<K\w(x)\a~p.

We assume for simplicity that intervals are subdivided into two parts and let
E(x, k) denote the algorithm's bound on the quadrature error for the interval
[x, x + 2~k).

ASSUMPTION 2 (Quadrature formula). With the constants p, K and a

of Assumption 1 we have

(i) If [x, x 4- 2~k] contains no singularity, then

E(x, k)<K max \f(p)(x)\2'pk\
[x,x + 2~k]

otherwise E(x, k)<K2'0Lk.

(ii) TJie quadrature formula for one interval requires q or fewer evalu­

ations of fix).

We now must define the algorithms to be considered, and for simplicity
we assume that the data structure for the interval collection consists of two
boxes. A value e > 0 is specified and an interval is in the active box if
E(x, k) > e, otherwise it is in the discard box. Intervals are chosen for pro­
cessing by any means whatsoever from the active box. One may interpret
more realistic data structures (e.g., stacks, queues, ordered lists) in terms of
this simplistic one and, hence, apply the convergence result to realistic algorithms.
We say we have a 2-box adaptive quadrature algorithm if its processor satisfies
Assumption 2 and it uses the two-box data structure. Recall that N is the
number of integrand evaluations.

THEOREM 2. Let f(x) satisfy Assumption 1 with a > - 1 . For a 2-box

algorithm we have, as N —* °°,

Ù(x)dx-QNf\ *= OVIN?).

Note that this is the same conclusion that we obtain for traditional quad­
rature rules for ƒ(*) € Cp [0, 1] and yet it includes f(x) = x~% .

We have considered the following questions for parallel computation:
1. Does Theorem 2 extend to parallel algorithms?
2. Can mathematical convergence be replaced by algorithmic convergence?

3. Can one prove an algorithmic convergence result for a specific com­
puter program?

1974] CONVERGENCE OF PARALLEL AND SEQUENTIAL ALGORITHMS 1253

4. What is the nature of the speedup in the computation that one ob­
tains with parallel computation?

The answer to the first question is yes, the metalgorithm and the proofs
can be modified and extended so as to apply to parallel computations. We
explain the nonstandard distinction between mathematical and algorithmic con­
vergence. Ordinary mathematical convergence states that an algorithm eventu­
ally produces accurate quadrature estimates.

Note that every sequence of numbers printed by a computer is the se­
quence of quadrature estimates for Simpson's rule applied to some f(x) E
C4 [0, 1] and, thus, there is no way to decide when to accept one of the es­
timates as accurate. Algorithmic convergence occurs when an algorithm is
given an arbitrary e > 0 and it terminates with an estimate with error less
than e. In computation it is algorithmic and not mathematical convergence
that is of interest, but it cannot be achieved without an additional assumption
on f(x). We introduce the characteristic length X(f) of a function f(x) for
a particular algorithm and X(f) is such that: when an interval's length is less

than X(f), then E(x, k) is a true bound on the quadrature error. It may be
nontrivial to discover X(f) for a particular f(x) and algorithm or to show
that X(f) > 0 exists for any reasonable class of functions. It has been shown
that the required characteristic lengths of two well-known algorithms, SQUANK
[2] and CADRE [1] are .5 and 1, respectively.

We have created a program PAFAQ for a parallel computer for which
the characteristic length is input and readily determined in most cases; X(f)

is the minimum separation of inflection points and singularities. We have
proved that this program is correct and that it has algorithmic convergence of
the order specified in Theorem 2. The convergence proof is in three levels.
The first and most abstract is the extension of the sequential result to parallel
computation. The second level involves a much more specific metalgorithm
which includes a set of 39 specific attributes. It is at this point that the change
from mathematical to algorithmic convergence takes place, and it is shown
that every algorithm represented by this metalgorithm has a rate of converg­
ence (in the algorithmic sense) as specified in Theorem 2. The third level is
the only one to involve the computer program, and it is shown both that
the program is correct and that it is a specific algorithm represented
by the second level metalgorithm. The convergence result then follows im­
mediately. The program is written for a hypothetical (but very reasonable)
parallel computer with a number of asynchronously operating general purpose
processors.

1254 J. R. RICE

The ideal speedup for a computer with M processors is 1/M, i.e. if
it takes 1 unit of time in a sequential computation, then it takes 0(1/M)

units of time in parallel. We have not been able to achieve anything near this
ideal, and, in fact, have only been able to show that there is constant factor
of speedup possible. We believe that much better results can be established,
probably Ö(log M/M). The slow down in the computation is due to the time
required to obtain and return intervals from and to the interval collection.
This must be done very carefully, otherwise two processors obtain the same
interval or one interval gets lost and the computation is ruined.

REFERENCES

1. C. de Boor, CADRE: An algorithm for numerical quadrature, Mathematical

Software (J. R. Rice, éd.), Academic Press, 1971, pp. 417-449.

2. J. N. Lyness, SQUANK (Simpson quadrature used adaptively-noise killed),

Algorithm 379, Comm. ACM 13 (1970), 260-263.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAY­

ETTE, INDIANA 47907

