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Adaptive quadrature algorithms dyamically choose the weights and 
abscissae in the formula 

/ = 1 

to adapt their estimates to the particular nature of the integrand f(x). Within 
the past five years experimental evidence has appeared to suggest that adaptive 
quadrature algorithms are significantly superior to traditional quadrature form­
ulas because they have a much wider domain of efficient applicability with 
little sacrifice in computational effort. 

A metalgorithm is an abstraction representing a large class of algorithms 
and is used to discuss and analyze the properties of adaptive quadrature algor­
ithms. A novel feature of these algorithms is the important role that data 
structures (for the interval collection) play in their behavior. A study of reason­
able selections of components for the metalgorithm shows that there are from 
1 to 10 million potentially interesting, significantly distinct adaptive quadrature 
algorithms. This situation illustrates the extreme difficulty of the common 
problem of selecting the "best" algorithm for a particular computation. 

Our purpose is to announce convergence results for a variety of adaptive 
quadrature algorithms2 (including all 10 million mentioned above). Roughly 
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speaking, these theorems state that adaptive quadrature algorithms are as effic­
ient and effective for badly behaved integrands (finite number of singularities) 
as comparable traditional quadrature formulas are for well-behaved integrands. 
This result explains the experimentally observed superiority of adaptive algorithms. 

The key to the analysis is the fact that an algorithm generates a tree of 
intervals as it adaptively subdivides the elements of the interval collection (sub­
division is usually into two equal halves). This subdivision naturally decreases 
the error in the quadrature estimates, and we abstract the process as follows: 
We are given: 

A Numbers e > 0 and 7, j 3 < l . 
B An empty set M' and a set M of intervals I with associated num­

bers r?(/). M contains a distinguished interval I*. 

C A process P. I —> (IL, IR) which divides / into left and right sub-
intervals IL and IR such that: 

(i) If ƒ = /* then r\(IL) = <n(IR) = P*v(I) and /*<-ƒ/ , or I*+-IR 

(ii) If / ^ / * then n(IL) = v(IR) = y*n(I). 

We now define a partition algorithm : 
For IE:M do 

P: / - > (IL, IR) 
If (v(IL) < e) then IL E M' else IL e M 
If (<q(IR) < e) then IR E M' else IRE M 

This algorithm terminates when M is empty and the following theorem esti­
mates the resulting size of M'. 

THEOREM 1. Consider the partition algorithm with ft M and rj(I) for 

I EM fixed initially. Let F(y, d) be the size of M' when the algorithm 

terminates and we have 

F ( T , e )=0(e 1 / ,° 8^). 

It is believed that this result is the key to the analysis of adaptive algorithms 
of other types (e.g., curve fitting, solutions of integral or differential equations) 
as well as for quadrature. 

To apply this result, we introduce two assumptions of a traditional math­
ematical nature. 

ASSUMPTION 1 (Integrand). Let f(x) have singularities S = {^1/ = 
1, 2, • • • , R < °°} and set w(x) = llf^^x - s^. 

(i) If x0 &S then f^p\x) is continuous in a neighborhood of x0. 
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(ii) There are constants Kf a and p > 2 so that 

\f^(x)\<K\w(x)\a~p. 

We assume for simplicity that intervals are subdivided into two parts and let 
E(x, k) denote the algorithm's bound on the quadrature error for the interval 
[x, x + 2~k). 

ASSUMPTION 2 (Quadrature formula). With the constants p, K and a 

of Assumption 1 we have 

(i) If [x, x 4- 2~k] contains no singularity, then 

E(x, k)<K max \f(p)(x)\2'pk\ 
[x,x + 2~k] 

otherwise E(x, k)<K2'0Lk. 

(ii) TJie quadrature formula for one interval requires q or fewer evalu­

ations of fix). 

We now must define the algorithms to be considered, and for simplicity 
we assume that the data structure for the interval collection consists of two 
boxes. A value e > 0 is specified and an interval is in the active box if 
E(x, k) > e, otherwise it is in the discard box. Intervals are chosen for pro­
cessing by any means whatsoever from the active box. One may interpret 
more realistic data structures (e.g., stacks, queues, ordered lists) in terms of 
this simplistic one and, hence, apply the convergence result to realistic algorithms. 
We say we have a 2-box adaptive quadrature algorithm if its processor satisfies 
Assumption 2 and it uses the two-box data structure. Recall that N is the 
number of integrand evaluations. 

THEOREM 2. Let f(x) satisfy Assumption 1 with a > - 1 . For a 2-box 

algorithm we have, as N —* °°, 

Ù(x)dx-QNf\ *= OVIN?). 

Note that this is the same conclusion that we obtain for traditional quad­
rature rules for ƒ(*) € Cp [0, 1] and yet it includes f(x) = x~% . 

We have considered the following questions for parallel computation: 
1. Does Theorem 2 extend to parallel algorithms? 
2. Can mathematical convergence be replaced by algorithmic convergence? 

3. Can one prove an algorithmic convergence result for a specific com­
puter program? 
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4. What is the nature of the speedup in the computation that one ob­
tains with parallel computation? 

The answer to the first question is yes, the metalgorithm and the proofs 
can be modified and extended so as to apply to parallel computations. We 
explain the nonstandard distinction between mathematical and algorithmic con­
vergence. Ordinary mathematical convergence states that an algorithm eventu­
ally produces accurate quadrature estimates. 

Note that every sequence of numbers printed by a computer is the se­
quence of quadrature estimates for Simpson's rule applied to some f(x) E 
C4 [0, 1] and, thus, there is no way to decide when to accept one of the es­
timates as accurate. Algorithmic convergence occurs when an algorithm is 
given an arbitrary e > 0 and it terminates with an estimate with error less 
than e. In computation it is algorithmic and not mathematical convergence 
that is of interest, but it cannot be achieved without an additional assumption 
on f(x). We introduce the characteristic length X(f) of a function f(x) for 
a particular algorithm and X(f) is such that: when an interval's length is less 

than X(f), then E(x, k) is a true bound on the quadrature error. It may be 
nontrivial to discover X(f) for a particular f(x) and algorithm or to show 
that X(f) > 0 exists for any reasonable class of functions. It has been shown 
that the required characteristic lengths of two well-known algorithms, SQUANK 
[2] and CADRE [1] are .5 and 1, respectively. 

We have created a program PAFAQ for a parallel computer for which 
the characteristic length is input and readily determined in most cases; X(f) 

is the minimum separation of inflection points and singularities. We have 
proved that this program is correct and that it has algorithmic convergence of 
the order specified in Theorem 2. The convergence proof is in three levels. 
The first and most abstract is the extension of the sequential result to parallel 
computation. The second level involves a much more specific metalgorithm 
which includes a set of 39 specific attributes. It is at this point that the change 
from mathematical to algorithmic convergence takes place, and it is shown 
that every algorithm represented by this metalgorithm has a rate of converg­
ence (in the algorithmic sense) as specified in Theorem 2. The third level is 
the only one to involve the computer program, and it is shown both that 
the program is correct and that it is a specific algorithm represented 
by the second level metalgorithm. The convergence result then follows im­
mediately. The program is written for a hypothetical (but very reasonable) 
parallel computer with a number of asynchronously operating general purpose 
processors. 
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The ideal speedup for a computer with M processors is 1/M, i.e. if 
it takes 1 unit of time in a sequential computation, then it takes 0(1/M) 

units of time in parallel. We have not been able to achieve anything near this 
ideal, and, in fact, have only been able to show that there is constant factor 
of speedup possible. We believe that much better results can be established, 
probably Ö(log M/M). The slow down in the computation is due to the time 
required to obtain and return intervals from and to the interval collection. 
This must be done very carefully, otherwise two processors obtain the same 
interval or one interval gets lost and the computation is ruined. 
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