SOLVABILITY ON MANIFOLDS BY QUADRATURES PERMITTING ONLY INTEGRALS

BY KUO-TSAI CHEN¹

Communicated by S. Eilenberg, May 28, 1974

Let M be a connected C^{∞} manifold, and let $\rho \colon \widetilde{M} \to M$ be the universal covering map. Choose a base point $\widetilde{x}_0 \in \widetilde{M}$, and write $x_0 = \rho \widetilde{x}_0$. The fundamental group $\pi_1(M)$ is assumed to be finitely generated.

Let A be a subcomplex of the de Rham complex $\Lambda(M)$ satisfying the conditions:

- (a) The subcomplex A is closed under the exterior product.
- (b) The inclusion $A \subset \Lambda(M)$ induces an isomorphism $H(A) \approx H(\Lambda(M))$. Write $F_0 = \rho^*A^0$ and $\Omega = \rho^*A^1$. If $w \in A^1$ is a closed 1-form on M, then the integral $\int_{\widetilde{X}_0} \rho^* w$ is a function on \widetilde{M} and can be regarded as a multivalued function on M. All such integrals together with 1 span a vector space F_1 of functions on \widetilde{M} such that $F_0 \subset F_1$. For $r \ge 1$, define F_{r+1} to be the vector space of functions spanned by F_r and all $\int_{\widetilde{X}_0} w$, w being closed 1-forms belonging to the subspace $F_r\Omega$ of $\Lambda^1(\widetilde{M})$. It turns out that $\widetilde{F} = \bigcup_{r \ge 0} F_r$ is an algebra of functions on \widetilde{M} .

Recall that the lower central series of a group G consists of commutator subgroups G_r , $r \ge 1$, defined by $G_1 = G$ and $G_{r+1} = [G_r, G]$, $r \ge 1$. The lower central series is said to stabilize modulo torsion if G_r/G_{r+1} is finite for r sufficiently large. A group G is said to be torsion free residually nilpotent if each quotient G_r/G_{r+1} is torsion free and if $\bigcap G_r = \{e\}$.

The purpose of this note is to announce the next results, which will be proved in detail elsewhere.

Theorem 1. The algebra \widetilde{F} is finitely generated over F if and only

AMS (MOS) subject classifications (1970). Primary 58C99; Secondary 53C65, 55A10, 58A10.

Key words and phrases. Differential forms, iterated integration, residually nilpotent groups, universal covering space, Picard-Vessiot theory.

Work supported in part by the National Science Foundation under NSF GP-34257.

if the lower central series of $\pi_1(M)$ stabilizes modulo torsion.

THEOREM 2. The algebra \widetilde{F} of functions on \widetilde{M} separates \widetilde{M} if and only if $\pi_1(M)$ is torsion free residually nilpotent.

COROLLARY 1. The algebra \widetilde{F} is finitely generated and separates \widetilde{M} if and only if $\pi_1(M)$ is torsion free nilpotent.

COROLLARY 2. If M is a compact Riemann surface, then \widetilde{F} separates the universal covering surface \widetilde{M} .

The function algebra \widetilde{F} is obtained from the given function algebra F on M by adjoining multivalued functions which are obtained through iterated integration. According to the above theorems, we know precisely when \widetilde{F} can be obtained from F by adjoining a finite number of elements and also when every continuous function on \widetilde{M} can be approximated on compact sets by functions in \widetilde{F} . Thus our results provide answers to questions pertaining to a several independent variable version of the Picard-Vessiot theory. In the one variable case, it is known [6] that an extension of a differential field by integrals corresponds to a Galois group which is algebraic nilpotent.

Since a compact nilmanifold has a torsion free nilpotent fundamental group, this work also relates to the function theory on nilpotent Lie groups under a discrete subgroup action such as the continuous theta function theory by Auslander and Rauch [1].

In order to prove Theorems 1 and 2, observe that \widetilde{F} can be regarded as an algebra of iterated integrals of 1-forms on M, whose value along each path depends only on the path homotopy class. By restricting to the space of loops at x_0 , we obtain from \widetilde{F} a quotient algebra \widetilde{F}' which has an ascending filtration. We may take \widetilde{F}' as an algebra of functions on $\pi_1(M)$.

Theorem 1 is equivalent to a necessary and sufficient condition for \widetilde{F}' being finitely generated over the real (or complex) number field, and Theorem 2 reduces to a necessary and sufficient condition for \widetilde{F}' to separate $\pi_1(M)$. It remains to show that $\widetilde{F}' = F'_A$, where F'_A is defined as in [3]. The inclusion $\widetilde{F}' \subset F'_A$ is not difficult to see. Using a method of formal power series connections as described in [5], we are able to establish $F'_A \subset \widetilde{F}'$

Corollary 2 follows from Theorem 2 because of a result of Baumslag [2] which implies that $\pi_1(M)$ is torsion free residually nilpotent.

BIBLIOGRAPHY

- 1. L. Auslander and H. E. Rauch, Theta functions or how to study functions on nilmanifolds and not even know it (mimeographed notes).
- 2. G. Baumslag, On the residual finiteness of generalised free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193-209. MR 26 #2489.
- 3. K. T. Chen, Fundamental groups, nilmanifolds and iterated integrals, Bull. Amer. Math. Soc. 79 (1973), 1033-1035. MR 47 #7676.
- 4. ———, Iterated integrals, fundamental groups and covering spaces (to appear).
- 5. ———, Connections, holonomy and path space homology, Proc Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R. I., 1974.
- 6. E. R. Kolchin, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) 49 (1948), 1-42. MR 9, 561.
- 7. ———, Differential algebra and algebraic groups, Academic Press, New York, 1973.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801