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Let M be a connected C°° manifold, and let p: M—>M be the 
universal covering map. Choose a base point x 0 E M, and write x0 = 
pxQ. The fundamental group Ttx(M) is assumed to be finitely generated. 

Let v4 bea subcomplex of the de Rham complex A(M) satisfying 
the conditions: 

(a) The subcomplex A is closed under the exterior product. 

(b) The inclusion A C A(M) induces an isomorphism H(A) « H(A(M)). 

Write F0 = p*A° and £2 = p*Ax. If w G i 1 is a closed 1-form on M, 

then the integral f~ p*w is a function on M and can be regarded as a 
multivalued function on M. All such integrals together with 1 span a vector 
space Fx of functions on M such that F0 C F r For r > 1, define 

Fr+ j to be the vector space of functions spanned by Fr and all J~ w, 
w being closed 1-forms belonging to the subspace Fr£l of A1 (Ai). It turns 
out that F — U r > 0 Fr is an algebra of functions on M. 

Recall that the lower central series of a group G consists of com­
mutator subgroups Gr, r > 1, defined by Gx = G and G r + 1 = [G r G], 
r > 1. The lower central series is said to stabilize modulo torsion if Gr/Gr+1 

is finite for r sufficiently large. A group G is said to be torsion free residually 
nilpotent if each quotient Gr/Gr+1 is torsion free and if f^Gr = {e}. 

The purpose of this note is to announce the next results, which will 
be proved in detail elsewhere. 

THEOREM 1. The algebra F is finitely generated over F if and only 
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if the lower central series of nt(M) stabilizes modulo torsion. 

THEOREM 2. The algebra F of functions on M separates M if and 
only if nt(M) is torsion free residually nilpotent. 

COROLLARY 1. The algebra F is finitely generated and separates M 
if and only if -nx(M) is torsion free nilpotent. 

COROLLARY 2. If M is a compact Riemann surface, then F separates 
the universal covering surface M. 

>̂ 
The function algebra F is obtained from the given function algebra F 

on M by adjoining multivalued functions which are obtained through iterated 

integration. According to the above theorems, we know precisely when F 

can be obtained from F by adjoining a finite number of elements and also 

when every continuous function on M can be approximated on compact sets 
by functions in F. Thus our results provide answers to questions pertaining 

to a several independent variable version of the Picard-Vessiot theory. In the 
one variable case, it is known [6] that an extension of a differential field by 
integrals corresponds to a Galois group which is algebraic nilpotent. 

Since a compact nilmanifold has a torsion free nilpotent fundamental 
group, this work also relates to the function theory on nilpotent Lie groups 
under a discrete subgroup action such as the continuous theta function theory 
by Auslander and Rauch [1]. 

In order to prove Theorems 1 and 2, observe that F can be regarded 
as an algebra of iterated integrals of 1-forms on M, whose value along each 
path depends only on the path homotopy class. By restricting to the space 
of loops at x0, we obtain from F a quotient algebra F which has an 
ascending filtration. We may take Ff as an algebra of functions on n^M). 

Theorem 1 is equivalent to a necessary and sufficient condition for F' 

being finitely generated over the real (or complex) number field, and Theo­
rem 2 reduces to a necessary and sufficient condition for F' to separate 
^ (M) . It remains to show that F' =Ff

A, where Ff
A is defined as in [3]. 

The inclusion F' C F*A is not difficult to see. Using a method of formal 
power series connections as described in [5], we are able to establish FA C 
F'. 

Corollary 2 follows from Theorem 2 because of a result of Baumslag 
[2] which implies that nt(M) is torsion free residually nilpotent. 
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