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We consider the linearized Boltzmann equation 

(1) dp/dt + £ • grad p = Qp/e, 

whose solution p = pe(t, x, £), t > 0, x G jR3, % G R3, e > 0. Q is the lin­
earized collision operator corresponding to a spherically symmetric hard poten­
tial, and e is a parameter which represents the mean free path. 

In a series of basic papers, Grad [6], [7], [8] studied the existence and 
asymptotic behavior of the solution of the initial value problem for (1), where 
the initial data p e (0+ , x, £) = f(x, £) satisfies mild growth and smoothness 
conditions. Grad's method begins with the decomposition 

(2) Q = -p + K, 

where v is the operator of multiplication by the collision frequency &>(£), a 
strictly positive function of |£|, and K is a compact operator on the Hu­
bert space H0 of functions ƒ(£) which satisfy 

</, /> = ( J ^ ) 3 / i/(öi2 exp (- m2/2)rfs < ~. 

Using (2), Grad wrote (1) as an integral equation and then derived a priori es­
timates for the solution in the Hubert space 

/ / = I 2 ( ^ 6 , ( l / > / 2 ^ ) 3 exp(r\i\2l2)dxdi). 

Grad also related the asymptotic behavior of p€ to the solutions of the linear 
Euler and Navier-Stokes equations. Given ƒ G H, define 
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fi(x) = (f(x, •)>£/>, / = 1,2,3; 

/4(*) = <ƒ(*•), (l?l2-3)/V6>, 

where < • , • > denotes the inner product on H0. The Navier-Stokes equa­
tions are written 

bnjbt + div n = 0, 

bn/bt + grad n0 + \/2J3 grad «4 = er?[An + (1/3) grad div n], 

bnjbt + y/2j3 div n = eXA«4, 

^•(o+, • ) = //. 

In (3), e > 0, nt = «ƒ(/, x) (/ = 0, • • •, 4), n = (^ , «2, n3), and 7? > 0 
and X > 0 are physical constants. The Euler equations are obtained from (3) 
by putting e = 0. Setting 

Pe = T€m 
À l£l2~3 

W B »o + ZnUt + "4 ~ ^ — > 

Grad proved the following asymptotic results: 

(4) Te(t)f = E(t)f+ 0(e), 

(5) Te(t/e)f=Ne(t/e)f+0(e). 

In physical terms, (4) describes the nonviscous fluid approximation at a fixed 
time t > 0; (5) describes the viscous effects when t -> °°. Our aim is to show 
that (5) is only one of a large variety of possible refinements of (4). This is 
accomplished by the following two results. 

BOLTZMANN LIMIT THEOREM. Let f(x, £) be sufficiently regular. 
Then 

(6) E{- t/e) T€(t/e)f = N(t)f + O(e) (e 10), 

where N(t) is a contraction semigroup on H whose generator is given by 
the differential equations 
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(7) 

s-(5*+?'K+yr(-é*+!'K 

•gS = rçAn + ( 5 ~ | ) g r a d div n, 

rc,(0+, *) = ƒ,(*); 
*. e, 

3 l | | 2 - 3 
_ ,n , t , - r n 4 -
1 

JV(0/=«o+2>1£ I+*4 ^ 

77ze semigroup {N(t)y t>0} commutes with the Euler semigroup {E(t\1 > 0}. 

In order to make connection with (5) we also need the following. 

NAVIER-STOKES LIMIT THEOREM. Let f(x, £) be sufficiently regular. 

Then 

(8) E(r t/e)Ne(t/e)f = N(t)f + 0(e) (e I 0). 

The proof of (8) proceeds by means of Fourier transformation from the 

following purely algebraic result, of independent interest. 

MATRIX LIMIT THEOREM. Let A, B be real, symmetric m x m ma-

trices and assume that B is negative semidefinite. Then 

exp(- itA/e)exp(t(iA + eB)/e) = exp(tirAB) + 0(e) (e I 0), 

where nAB is the orthogonal projection, in the space of m x m matrices, 

of B onto the linear subspace of matrices which commute with A. 

In particular, we show that N(i) is obtained by a projection, in the 
space of operators, of N€(t) upon the set of operators which commute with 
{E(t), t > 0}. 

Using (6), we have 

(9) Te(t/e)f = E(t/e)N(t)f + 0(e) (e I 0). 

This is the simplest of an infinite number of alternatives to (5). Indeed, if 
N(t) is any operator whose projection is N(t), then we may substitute 
N(t) for N(t) in (9). 

The proof of (6) depends on a careful spectral analysis of the operator 
Ô "-*(7 * £)> where y G R3 is a parameter. We prove the existence and 
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differentiability, for I7I sufficiently small, of the hydrodynamical eigenvalues 
and eigenfunctions {0^(7) , e^(y);j = 1, •••, 5} which satisfy a^\0) = 0, 
e^\0) G span { 1, %x, £2, £3, \%\2}. We then prove a contour integral repre­
sentation 

exp [f(ô -*'(7 •?))]ƒ= Z exp(ra('>)(7)</, e<»(-7)>e ( / )(r) 

( 1 0 ) ' ' 1 r * . . , , . (Ô - *7 • £))2 

+ à-ƒ/•*(«•*>" ; * / * . 
where C is a vertical contour in the half plane Re a < 0 and R(a, 7) = 
(Q ~ Kl ' £) ~ a ) ~ * • The first term of (10) corresponds to the Hubert solu­

tion and gives the connection with hydrodynamics. The second term is neg­
ligible in the hydrodynamic limit. In case v(g) ~ |£|a as \%\ —• °° (a > 0), 
the contour integral may be replaced by fce

taR(a, y)fdoc9 where the con­
tour C is such that Re a —» - °° when Im a —> ± °°. The existence of the 
eigenvalues 0:^(7) follows by applying the implicit function theorem to the 
exact hydrodynamical dispersion laws. Previously, exact dispersion laws were 
obtained [11] only for hard sphere pptentials, i.e., p(%) ~ |£| as |£| —> °°. 
In this case, the 0^(7) are analytic functions and can also be obtained from 
Rellich's perturbation theorem [9], [10]. In case v(g) ~ \^\a as |£| —• °°, 
0 < a < 1, the oft) (7) will not be analytic around 7 = 0. Nevertheless, 
we obtain an asymptotic development 

a 0 ) ( 7 ) ~ i : o#>|7 |» ( l < / < 5 ) . 

where a ^ is imaginary and 0$ < 0. These constants can be computed 
by formal perturbation theory. They correspond to the adiabatic sound 
speed and absorption coefficients for low frequency sound waves [5]. 

The results (6) and (8) extend known results on finite-state velocity 
models in one dimension [1], [2] to the full three-dimensional linearized 
Boltzmann equation. These theorems are valid in any number of dimensions. 
Their proofs and related matters will appear in full detail in [3], [4]. 
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