ASYMPTOTIC NONUNIQUENESS OF THE NAVIER-STOKES EQUATIONS IN KINETIC THEORY¹

BY RICHARD S. ELLIS AND MARK A. PINSKY

Communicated by H. Kesten, May 22, 1974

We consider the linearized Boltzmann equation

(1)
$$\partial p/\partial t + \xi \cdot \operatorname{grad} p = Qp/\epsilon,$$

whose solution $p = p_{\epsilon}(t, x, \xi)$, t > 0, $x \in \mathbb{R}^3$, $\xi \in \mathbb{R}^3$, $\epsilon > 0$. Q is the linearized collision operator corresponding to a spherically symmetric hard potential, and ϵ is a parameter which represents the mean free path.

In a series of basic papers, Grad [6], [7], [8] studied the existence and asymptotic behavior of the solution of the initial value problem for (1), where the initial data $p_{\epsilon}(0^+, x, \xi) = f(x, \xi)$ satisfies mild growth and smoothness conditions. Grad's method begins with the decomposition

$$(2) Q = -\nu + K,$$

where ν is the operator of multiplication by the collision frequency $\nu(\xi)$, a strictly positive function of $|\xi|$, and K is a compact operator on the Hilbert space H_0 of functions $f(\xi)$ which satisfy

$$\langle f, f \rangle \equiv \left(\frac{1}{\sqrt{2\pi}}\right)^3 \int |f(\xi)|^2 \exp(-|\xi|^2/2) d\xi < \infty.$$

Using (2), Grad wrote (1) as an integral equation and then derived a priori estimates for the solution in the Hilbert space

$$H \equiv L^2(R^6, (1/\sqrt{2\pi})^3 \exp(-|\xi|^2/2) dx d\xi).$$

Grad also related the asymptotic behavior of p_{ϵ} to the solutions of the linear Euler and Navier-Stokes equations. Given $f \in H$, define

AMS (MOS) subject classifications (1970). Primary 82A40, 76D30; Secondary 15A27, 76Q05, 45M05.

Key words and phrases. Boltzmann equation, hydrodynamic limit, Euler equations, Navier-Stokes equations, contraction semigroup.

¹ Research supported by grant GP-28576.

$$f_0(x) = \langle f(x, \cdot), 1 \rangle;$$

$$f_i(x) = \langle f(x, \cdot), \xi_i \rangle, \quad i = 1, 2, 3;$$

$$f_4(x) = \langle f(x, \cdot), (|\xi|^2 - 3)/\sqrt{6} \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product on H_0 . The Navier-Stokes equations are written

$$\partial n_0/\partial t + \text{div } \mathbf{n} = 0,$$

$$\partial \mathbf{n}/\partial t + \text{grad } n_0 + \sqrt{2/3} \text{ grad } n_4 = \epsilon \eta [\Delta \mathbf{n} + (1/3) \text{ grad div } \mathbf{n}],$$

$$\partial n_4/\partial t + \sqrt{2/3} \text{ div } \mathbf{n} = \epsilon \lambda \Delta n_4,$$

$$n_i(0^+, \cdot) = f_i.$$

In (3), $\epsilon > 0$, $n_i = n_i^{\epsilon}(t, x)$ $(i = 0, \dots, 4)$, $n = (n_1, n_2, n_3)$, and $\eta > 0$ and $\lambda > 0$ are physical constants. The Euler equations are obtained from (3) by putting $\epsilon = 0$. Setting

$$\begin{split} p_{\epsilon} &= T_{\epsilon}(t)f, \\ N_{\epsilon}(t)f &= n_0^{\epsilon} + \sum_{i=1}^{3} n_i^{\epsilon} \xi_i + n_4^{\epsilon} \frac{|\xi|^2 - 3}{\sqrt{6}}, \\ E(t)f &= N_0(t)f, \end{split}$$

Grad proved the following asymptotic results:

(4)
$$T_{\epsilon}(t)f = E(t)f + O(\epsilon),$$
(5)
$$T_{\epsilon}(t/\epsilon)f = N_{\epsilon}(t/\epsilon)f + O(\epsilon).$$

(5)
$$T_{\epsilon}(t/\epsilon)f = N_{\epsilon}(t/\epsilon)f + O(\epsilon).$$

In physical terms, (4) describes the nonviscous fluid approximation at a fixed time t > 0; (5) describes the viscous effects when $t \to \infty$. Our aim is to show that (5) is only one of a large variety of possible refinements of (4). This is accomplished by the following two results.

BOLTZMANN LIMIT THEOREM. Let $f(x, \xi)$ be sufficiently regular. Then

(6)
$$E(-t/\epsilon)T_{\epsilon}(t/\epsilon)f = \overline{N}(t)f + O(\epsilon) \quad (\epsilon \downarrow 0),$$

where $\overline{N}(t)$ is a contraction semigroup on H whose generator is given by the differential equations

(7)
$$\frac{\partial n_0}{\partial t} = \left(\frac{9}{25} \lambda + \frac{2}{5} \eta\right) \Delta n_0 + \sqrt{\frac{2}{3}} \left(-\frac{6}{25} \lambda + \frac{2}{5} \eta\right) \Delta n_4, \\
\frac{\partial \mathbf{n}}{\partial t} = \eta \Delta \mathbf{n} + \left(\frac{\lambda}{5} - \frac{\eta}{3}\right) \text{grad div } \mathbf{n}, \\
\frac{\partial n_4}{\partial t} = \sqrt{\frac{2}{3}} \left(-\frac{6}{25} \lambda + \frac{2}{5} \eta\right) \Delta n_0 + \left(\frac{11}{25} \lambda + \frac{4}{15} \eta\right) \Delta n_4, \\
n_i(0^+, x) = f_i(x);$$

i. e.,

$$\overline{N}(t)f = n_0 + \sum_{i=1}^{3} n_i \xi_i + n_4 \frac{|\xi|^2 - 3}{\sqrt{6}}$$

The semigroup $\{\overline{N}(t), t \ge 0\}$ commutes with the Euler semigroup $\{E(t), t \ge 0\}$.

In order to make connection with (5) we also need the following.

NAVIER-STOKES LIMIT THEOREM. Let $f(x, \xi)$ be sufficiently regular. Then

(8)
$$E(-t/\epsilon)N_{\epsilon}(t/\epsilon)f = \overline{N}(t)f + O(\epsilon) \quad (\epsilon \downarrow 0).$$

The proof of (8) proceeds by means of Fourier transformation from the following purely algebraic result, of independent interest.

MATRIX LIMIT THEOREM. Let A, B be real, symmetric $m \times m$ matrices and assume that B is negative semidefinite. Then

$$\exp(-itA/\epsilon)\exp(t(iA + \epsilon B)/\epsilon) = \exp(t\pi_A B) + O(\epsilon) \quad (\epsilon \downarrow 0)$$

where $\pi_A B$ is the orthogonal projection, in the space of $m \times m$ matrices, of B onto the linear subspace of matrices which commute with A.

In particular, we show that $\overline{N}(t)$ is obtained by a projection, in the space of operators, of $N_{\epsilon}(t)$ upon the set of operators which commute with $\{E(t), t \geq 0\}$.

Using (6), we have

(9)
$$T_{\epsilon}(t/\epsilon)f = E(t/\epsilon)\bar{N}(t)f + O(\epsilon) \quad (\epsilon \downarrow 0).$$

This is the simplest of an infinite number of alternatives to (5). Indeed, if $\widetilde{N}(t)$ is any operator whose projection is $\overline{N}(t)$, then we may substitute $\widetilde{N}(t)$ for $\overline{N}(t)$ in (9).

The proof of (6) depends on a careful spectral analysis of the operator $Q - i(\gamma \cdot \xi)$, where $\gamma \in \mathbb{R}^3$ is a parameter. We prove the existence and

differentiability, for $|\gamma|$ sufficiently small, of the hydrodynamical eigenvalues and eigenfunctions $\{\alpha^{(j)}(\gamma), e^{(j)}(\gamma); j=1, \cdots, 5\}$ which satisfy $\alpha^{(j)}(0)=0$, $e^{(j)}(0)\in \text{span }\{1,\xi_1,\xi_2,\xi_3,|\xi|^2\}$. We then prove a contour integral representation

(10)
$$\exp \left[t(Q - i(\gamma \cdot \xi))\right] f = \sum_{j=1}^{5} \exp(t\alpha^{(j)})(\gamma) \langle f, e^{(j)}(-\gamma) \rangle e^{(j)}(\gamma) + \frac{1}{2\pi i} \int_{C} e^{t\alpha} R(\alpha, \gamma) \frac{(Q - i(\gamma \cdot \xi))^{2}}{\alpha^{2}} f d\alpha,$$

where C is a vertical contour in the half plane $\operatorname{Re} \alpha < 0$ and $R(\alpha, \gamma) \equiv (Q - i(\gamma \cdot \xi) - \alpha)^{-1}$. The first term of (10) corresponds to the Hilbert solution and gives the connection with hydrodynamics. The second term is negligible in the hydrodynamic limit. In case $\nu(\xi) \sim |\xi|^{\alpha}$ as $|\xi| \to \infty$ ($\alpha > 0$), the contour integral may be replaced by $\int_C e^{t\alpha} R(\alpha, \gamma) f \, d\alpha$, where the contour C is such that $\operatorname{Re} \alpha \to -\infty$ when $\operatorname{Im} \alpha \to \pm \infty$. The existence of the eigenvalues $\alpha^{(j)}(\gamma)$ follows by applying the implicit function theorem to the exact hydrodynamical dispersion laws. Previously, exact dispersion laws were obtained [11] only for hard sphere potentials, i.e., $\nu(\xi) \sim |\xi|$ as $|\xi| \to \infty$. In this case, the $\alpha^{(j)}(\gamma)$ are analytic functions and can also be obtained from Rellich's perturbation theorem [9], [10]. In case $\nu(\xi) \sim |\xi|^{\alpha}$ as $|\xi| \to \infty$, $0 \le \alpha < 1$, the $\alpha^{(j)}(\gamma)$ will not be analytic around $\gamma = 0$. Nevertheless, we obtain an asymptotic development

$$\alpha^{(j)}(\gamma) \sim \sum_{n=1}^{\infty} \alpha_n^{(j)} |\gamma|^n \quad (1 \le j \le 5),$$

where $\alpha_1^{(j)}$ is imaginary and $\alpha_2^{(j)} < 0$. These constants can be computed by formal perturbation theory. They correspond to the adiabatic sound speed and absorption coefficients for low frequency sound waves [5].

The results (6) and (8) extend known results on finite-state velocity models in one dimension [1], [2] to the full three-dimensional linearized Boltzmann equation. These theorems are valid in any number of dimensions. Their proofs and related matters will appear in full detail in [3], [4].

REFERENCES

- 1. R. Ellis and M. Pinsky, Limit theorems for model Boltzmann equations with several conserved quantities, Indiana Univ. Math. J. 23 (1973), 287-307. MR 47 #8058.
- 2. ———, Asymptotic equivalence of the linear Navier-Stokes and heat equations in one dimension, J. Differential Equations (to appear).
 - 3. R. Ellis and M. Pinsky, Projection of the Navier-Stokes equations upon the Euler

- equations, J. Math. Pures Appl. (to appear).
- 4. ———, The first and second fluid approximations to the Boltzmann equation, J. Math. Pures Appl. (to appear).
- 5. J. D. Foch and G. W. Ford, The dispersion of sound in monoatomic cases, Studies in Statistical Mechanics, vol. 5, North-Holland, Amsterdam, 1970.
- 6. H. Grad, Asymptotic theory of the Boltzmann equation. II, Rarefied Gas Dynamics (Proc. Third Internat. Sympos., Palais de l'UNESCO, Paris, 1962), vol. 1, Academic Press, New York, 1963, pp. 26-59. MR 27 #6577.
- 7. ——, Asymptotic equivalence of the Navier-Stokes and non-linear Boltz-mann equations, Proc. Sympos. Appl. Math., vol. 17, Amer. Math. Soc., Providence, R. I., 1965, pp. 154-183. MR 32 #1979.
- 8. ——, Solution of the Boltzmann equation in an unbounded domain, Comm. Pure Appl. Math. 18 (1965), 345-354. MR 32 #8913.
- 9. T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324.
- 10. J. A. McLennan, Convergence of the Chapman-Enskog expansion for the linearized Boltzmann equation, Phys. Fluids 8 (1965), 1580-1584. MR 33 #6948.
- 11. B. Nicolaenko, *Dispersion laws for plane wave propagation*, The Boltzmann Equation (ed. by F. A. Grünbaum), Courant Institute of Mathematical Sciences, New York, 1971, pp. 125-173.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON. ILLINOIS 60201