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We consider the linearized Boltzmann equation

@) dp/dt + & - grad p = Qp/e,

whose solution p =p(t, x, §),t>0,x € R3,¢€R3 e€>0. Q is the lin-
earized collision operator corresponding to a spherically symmetric hard poten-
tial, and e is a parameter which represents the mean free path.

In a series of basic papers, Grad [6], [7], [8] studied the existence and
asymptotic behavior of the solution of the initial value problem for (1), where
the initial data p (0%, x, §) = f(x, &) satisfies mild growth and smoothness
conditions. Grad’s method begins with the decomposition

) Q=-v+K,

where v is the operator of multiplication by the collision frequency (), a
strictly positive function of |£|, and K is a compact operator on the Hil-
bert space H, of functions f(¢) which satisfy

3
0= (7= ) f 1P e 5P <

Using (2), Grad wrote (1) as an integral equation and then derived a priori es-
timates for the solution in the Hilbert space

H=L2RS, (17/21)? exp (- |£[2/2) dx d).

Grad also related the asymptotic behavior of p,. to the solutions of the linear
Euler and Navier-Stokes equations. Given f € H, define
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Jox) = {f(x, - ), 1);
fi(x)=<f(x’ '): £i>’ i= 1: 2: 3;
fa@) = (fx, ), (EI* - 3)/v/6),

where (., +) denotes the inner product on H,. The Navier-Stokes equa-
tions are written
Ony /ot + divn =0,
an/dr + grad ny + +/2/3 grad n, = en[An + (1/3) grad div n],
on, /ot + V2/3 div n = eNAn,,
n; (0%, )=,
In (3),e>0,n;=ni(t,x) (i=0,+,4),n=(n,, ny, nz), and n>0
and A >0 are physical constants. The Euler equations are obtained from (3)
by putting € = 0. Setting
p. = T (), )
€ 2 € € Igl - - 3
Ne(t)f=”o+2”i§i+"4 »
i=1 V6

E(0)f = No()f,
Grad proved the following asymptotic results:

@ T(0)f = E@)f + O(e),
&) T(t/e)f = N (t/e)f + O(e).

(el 0)

In physical terms, (4) describes the nonviscous fluid approximation at a fixed
time t > 0; (5) describes the viscous effects when ¢ - co. Our aim is to show
that (5) is only one of a large variety of possible refinements of (4). This is
accomplished by the following two results.

BoLTZMANN LIMIT THEOREM. Let f(x, £) be sufficiently regular.
Then

(6 EC t/)T (t/e)f = N(Of + Oe)  (e40),

where N(t) is a contraction semigroup on H whose generator is given by
the differential equations
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7 g
s _ /2 <-£>\+— )An +<”>\+-‘-‘- )An
ot 3 25 250 T 15N ) Ala
ni(0+ ’ x) = fz(x)5
ie,
— 3 12 -3
N(t)f=n0+2ni§i+n4—\—/6—"—_
1

The semigroup {ﬁ(t), t 2 0} commutes with the Euler semigroup {E(f),t = 0}.
In order to make connection with (5) we also need the following.
NAVIER-STOKES LiMIT THEOREM. Let f(x, §) be sufficiently regular.

Then _

€ E(-t/e)N (t/e)f=N@)f+ O() (e 0).

The proof of (8) proceeds by means of Fourier transformation from the
following purely algebraic result, of independent interest.

MATRIX LIMIT THEOREM. Let A, B be real, symmetric m x m ma-
trices and assume that B is negative semidefinite. Then

exp (— itA/e) exp (1(iA + eB)/e) = exp(tnyB) + O(e) (e ¥ 0),

where w4 B is the orthogonal projection, in the space of m x m matrices,
of B onto the linear subspace of matrices which commute with A.

In particular, we show that N () is obtained by a projection, in the
space of operators, of N_(f) upon the set of operators which commute with
{E@®), t = 0}.

Using (6), we have

©) T (t/e)f = E(t{e)N@)f + O(e) (e 4 0).

Thls is the simplest of an infinite number of alternatives to (5). Indeed, if
N (t) is any operator whose projection is N (), then we may substitute
N(t) for N(¢) in (9).

The proof of (6) depends on a careful spectral analysis of the operator
Q —i(y - £), where y € R? is a parameter. We prove the existence and
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differentiability, for |vy| sufficiently small, of the hydrodynamical eigenvalues
and eigenfunctions {a(f)('y), e(j)('y);j =1, +++, 5} which satisfy a(j)(O) =0,
e(j)(O) Espan {1, &, §,, &3, |£12}. We then prove a contour integral repre-
sentation

5 " . -
exp [1(Q — i(y - £)]f = }:1 exp (LaD)()(f, eP(= 7)) eD(y)
]:

(10) 1 Q — i~ . g 2
+ 511'7 fceta R(a, 7).§___1S:_2_)_)__fda,

where C is a vertical contour in the half plane Re a <0 and R(a, 7) =
(Q —i(y - §) —a)~!. The first term of (10) corresponds to the Hilbert solu-
tion and gives the connection with hydrodynamics. The second term is neg-
ligible in the hydrodynamic limit. In case »(§¥) ~ |£|* as |E]| = o (a > 0),
the contour integral may be replaced by [ €' R(a, v)fda, where the con-
tour C is such that Rea — — o when Im a — + oo. The existence of the
eigenvalues a(f)('y) follows by applying the implicit function theorem to the
exact hydrodynamical dispersion laws. Previously, exact dispersion laws were
obtained [11] only for hard sphere potentials, i.e., v(§) ~ |£] as |§] —> oo,
In this case, the a)(y) are analytic functions and can also be obtained from
Rellich’s perturbation theorem [9], [10]. In case »(§) ~ |E]* as |&| —> oo,
0<a<1, the a® (y) will not be analytic around +y = 0. Nevertheless,
we obtain an asymptotic development

D~ Diylr (1<j<5),
n=1

where a(lj) is imaginary and ozgj) < 0. These constants can be computed
by formal perturbation theory. They correspond to the adiabatic sound
speed and absorption coefficients for low frequency sound waves [5].

The results (6) and (8) extend known results on finite-state velocity
models in one dimension [1], [2] to the full three-dimensional linearized
Boltzmann equation. These theorems are valid in any number of dimensions.
Their proofs and related matters will appear in full detail in [3], [4].
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