A FIXED POINT THEOREM FOR MULTIVALUED NONEXPANSIVE MAPPINGS IN A UNIFORMLY CONVEX BANACH SPACE

BY TECK-CHEONG LIM1

Communicated by Alberto Calderón, February 19, 1974

Let C be a nonempty weakly compact convex subset of a Banach space X, and $\mathscr{C}(C)$ be the family of nonempty compact subsets of C equipped with the Hausdorff metric. Let $T: C \rightarrow \mathscr{C}(C)$ be a nonexpansive mapping, i.e. for each $x, y \in C$,

$$H(T(x), T(y)) \leq ||x - y||,$$

where H(A, B) denotes the Hausdorff distance between A and B. A point $x \in C$ is called a fixed point of T if $x \in Tx$. Fixed point theorems for such mappings T have been established by Markin [11] for Hilbert spaces, by Browder [2] for spaces having weakly continuous duality mapping, and by Lami Dozo [7] for spaces satisfying Opial's condition. Lami Dozo's result is also generalized by Assad and Kirk [1]. By making use of Edelstein's asymptotic center [4], [5], we are able to prove Theorem 1. Let C be a closed convex subset of a uniformly convex Banach space and let $\{u_i\}$ be a bounded sequence in C. The asymptotic center x of $\{u_i\}$ in (or with respect to) C is the unique point in C such that

$$\limsup_{i} \|x - u_i\| = \inf \Bigl\{ \limsup_{i} \|y - u_i\| : y \in C \Bigr\}.$$

The number $r = \inf\{\lim \sup_i ||y-u_i|| : y \in C\}$ is called the asymptotic radius of $\{u_i\}$ in C. Existence of the unique asymptotic center is proved by Edelstein in [5]. Results on ordinal numbers used here may be found in [13].

Theorem 1. Let X be a uniformly convex Banach space and C be a closed convex bounded nonempty subset of X. Let $T: C \rightarrow \mathcal{C}(C)$ be a non-expansive mapping from C into the family of nonempty compact subsets of

AMS (MOS) subject classifications (1970). Primary 46A05.

Key words and phrases. Fixed point, multivalued nonexpansive mapping, uniformly convex Banach space, asymptotic center.

¹ This research was conducted while the author held an Izzak Walton Killam Memorial Scholarship under the supervision of Professor Michael Edelstein.

C (equipped with the Hausdorff metric). Then T has a fixed point, i.e. there exists $x \in C$ with $x \in Tx$.

PROOF. Let a be a point in C fixed throughout the proof. Let $\{\lambda_m\}$ be a decreasing sequence of positive numbers and $\lim \lambda_m = 0$. For each m, the mapping $T_m: C \rightarrow \mathscr{C}(C)$ defined by $T_m(x) = \lambda_m a + (1 - \lambda_m) Tx$ is a contraction mapping and hence has a fixed point x_m (Nadler [12]). Thus $x_m \in \lambda_m a + (1 - \lambda_m) Tx_m$, and there exists $y_m \in Tx_m$ with $x_m = \lambda_m a + (1 - \lambda_m) y_m$. Since C is bounded, we have

$$||x_m - y_m|| = \lambda_m ||a - y_m|| \to 0 \text{ as } m \to \infty.$$

To facilitate the later description, we define $i:\{x_m\} \rightarrow \{y_m\}$ by $i(x_m) = y_m$ for all m. We say that a sequence $\{x_n\}$ is an essential subsequence of $\{y_m\}$ if for some N>0, $\{x_n\}_{n\geq N}$ is a subsequence of $\{y_m\}$.

Define the sequence $\{x_m^{(0)}\}$ to be $\{x_m\}$, i.e. $x_m^{(0)} = x_m$ for each $m \ge 1$. Let Ω be the first uncountable ordinal and β be a countable ordinal, i.e. $\beta < \Omega$. Suppose that $\{x_m^{(\alpha)}\}$ has been defined for every ordinal α less than β in such a way that $\{x_m^{(\alpha)}\}$ is an essential subsequence of $\{x_m^{(\delta)}\}$ whenever $\delta < \gamma < \beta$. We define $\{x_m^{(\beta)}\}$ as follows:

Case 1. β has an immediate predecessor, i.e., $\beta = \alpha + 1$ for some $\alpha < \Omega$. Let z_{α} be the asymptotic center of $\{x_{m}^{(\alpha)}\}$ in C. For each m, let $p_{m} \in Tz_{\alpha}$ be chosen such that

$$||p_m - y_m^{(\alpha)}|| \le ||z_\alpha - x_m^{(\alpha)}||,$$

where $y_m^{(\alpha)} = i(x_m^{(\alpha)})$; existence of such a p_m is a consequence of the non-expansiveness of T and the compactness of Tz_{α} . Since Tz_{α} is compact and $\{p_m\} \subseteq Tz_{\alpha}$, there exists a convergent subsequence $\{p_{m_i}\}$ of $\{p_m\}$. We then define $\{x_m^{(\beta)}\}$ to be the sequence $\{x_m^{(\alpha)}\}$.

Case 2. β is a limit ordinal. Then there exists a strictly increasing sequence $\{\alpha_n\}$ of ordinal numbers such that $\alpha_n < \beta$ for each n and $\alpha_n \to \beta$, i.e. for every $\alpha < \beta$, there exists n such that $\alpha < \alpha_n < \beta$. By dropping a finite number of terms if necessary, we may assume that $\{x_m^{(\alpha_n)}\}$ is a subsequence of $\{x_m^{(\alpha_n)}\}$ whenever p < n. We then define $\{x_m^{(\beta)}\}$ to be the sequence constructed from $\{x_m^{(\alpha_n)}\}$ by the diagonal process, i.e., $\{x_m^{(\beta)}\} = \{x_m^{(\alpha_m)}\}$. Then $\{x_m^{(\beta)}\}$ is an essential subsequence of $\{x_m^{(\alpha_n)}\}$ for each n. Since $\alpha_n \to \beta$, $\{x_m^{(\beta)}\}$ is an essential subsequence of $\{x_m^{(\alpha)}\}$ whenever $\alpha < \beta$.

Hence $\{x_m^{(\alpha)}\}$ are defined for all $\alpha < \Omega$. Now for each $\alpha < \Omega$, we let r_α be the asymptotic radius of $\{x_m^{(\alpha)}\}$ in C. Since $\{x_m^{(\gamma)}\}$ is an essential subsequence of $\{x_m^{(\delta)}\}$ whenever $\delta < \gamma$, and since $r_\alpha \ge 0$ for every $\alpha < \Omega$, the transfinite sequence $\{r_\alpha : \alpha < \Omega\}$ on the real line is decreasing and has lower bound 0. Let $s=\inf\{r_\alpha : \alpha < \Omega\}$. Then clearly $\lim\{r_\alpha : \alpha < \Omega\}$ exists and equals s. This can happen only if for some $\beta_0 < \Omega$, $r_\alpha = s$ for all α with $\beta_0 < \alpha < \Omega$. Let

 α be a fixed ordinal with $\beta_0 < \alpha < \Omega$. We shall show that the asymptotic center z_{α} of $\{x_m^{(\alpha)}\}$ is a fixed point of T.

From the way that $\{x_m^{(\alpha+1)}\}\$ is constructed from $\{x_m^{(\alpha)}\}\$, there exists a convergent sequence $\{p_m\}\subseteq Tz_\alpha$ with $\lim p_m=p\in Tz_\alpha$ such that

$$||p_m - y_m^{(\alpha+1)}|| \le ||z_\alpha - x_m^{(\alpha+1)}||$$

for all m, where $y_m^{(\alpha+1)} = i(x_m^{(\alpha+1)})$. Since $\{x_m^{(\alpha+1)}\}$ is a subsequence of $\{x_m^{(\alpha)}\}$, and $x_m^{(\alpha+1)} - y_m^{(\alpha+1)} \rightarrow 0$, we have from (1):

$$\begin{split} \limsup_{m} \|p - x_{m}^{(\alpha+1)}\| &= \limsup_{m} \|p - y_{m}^{(\alpha+1)}\| \\ &\leq \limsup_{m} \|z_{\alpha} - x_{m}^{(\alpha+1)}\| \\ &\leq \limsup_{m} \|z_{\alpha} - x_{m}^{(\alpha)}\| = r_{\alpha} = r_{\alpha+1}. \end{split}$$

It follows from the uniqueness of the asymptotic center that $p=z_{\alpha+1}$ and $z_{\alpha}=z_{\alpha+1}$, where $z_{\alpha+1}$ is the asymptotic center of $\{x_m^{(\alpha+1)}\}$ in C. Hence $z_{\alpha}=p\in Tz_{\alpha}$, completing the proof.

REMARK. Theorem 1 remains true if X is required only to be reflexive and uniformly convex in every direction [6], [3], since in such spaces the asymptotic center of a bounded sequence in a closed convex set is unique [10].

We do not know whether Theorem 1 is true when C is required only to be weakly compact and to have normal structure. For the application of asymptotic center under this setting, see [8] and [9].

REFERENCES

- 1. N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553-562.
- 2. F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., vol. 18, part II, Amer. Math. Soc., Providence, R.I. (to appear).
- 3. M. M. Day, R. C James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051-1059. MR 44 #4492.
- 4. M. Edelstein, The construction of an asymptotic center with a fixed point property, Bull. Amer. Math. Soc. 78 (1972), 206-208. MR 45 #1005.
 - 5. ——, Fixed point theorems in uniformly convex Banach spaces (to appear).
- 6. A. L. Garkavi, The best possible net and the best possible cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106; English transl., Amer. Math. Soc. Transl. (2) 39 (1964), 111-132. MR 25 #429.
- 7. E. Lami Dozo, Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc. 38 (1973), 286-292. MR 46 #9816.

1126 T.-C. LIM

- **8.** T. C. Lim, A fixed point theorem for families of nonexpansive mappings, Pacific J. Math. (to appear).
- 9. ——, Characterizations of normal structure, Proc. Amer. Math. Soc. 43 (1974), 313–319.
 - 10. ———, On asymptotic center and its applications to fixed point theory (submitted).
- 11. J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640. MR 37 #3409.
- 12. S. B. Nadler, Jr., *Multi-valued contraction mappings*, Pacific J. Math. 30 (1969), 475–488. MR 40 #8035.
- 13. W. Sierpiński, Cardinal and ordinal numbers, 2nd rev. ed., Monografie Mat., vol. 34, PWN, Warsaw, 1965, p. 382 and p. 390. MR 33 #2549.

DEPARTMENT OF MATHEMATICS, DALHOUSIE UNIVERSITY, HALIFAX, NOVA SCOTIA, CANADA

Current address: Department of Mathematics, University of Chicago, Chicago, Illinois 60637