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Let C be a nonempty weakly compact convex subset of a Banach space 
X, and ^ (C) be the family of nonempty compact subsets of C equipped 
with the Hausdorff metric. Let T: C-^€(C) be a nonexpansive mapping, 
i.e. for each x, y e C, 

H(T(x)9T(y))£\\x-y\\9 

where H(A, B) denotes the Hausdorff distance between A and B. A point 
x e C is called a fixed point of T if x e Tx. Fixed point theorems for such 
mappings T have been established by Mar kin [11] for Hubert spaces, by 
Browder [2] for spaces having weakly continuous duality mapping, and 
by Lami Dozo [7] for spaces satisfying OpiaPs condition. Lami Dozo's 
result is also generalized by Assad and Kirk [1]. By making use of Edel-
stein's asymptotic center [4], [5], we are able to prove Theorem 1. Let C 
be a closed convex subset of a uniformly convex Banach space and let {wj 
be a bounded sequence in C. The asymptotic center x of {wj in (or with 
respect to) C is the unique point in C such that 

lim sup \\x — ut\\ = infjlim sup \\y — wj| :y e c} . 

The number r=inf{lim supjjy—wj :y e C} is called the asymptotic radius 
of {wj in C. Existence of the unique asymptotic center is proved by 
Edelstein in [5]. Results on ordinal numbers used here may be found in 
[13]. 

THEOREM 1. Let X be a uniformly convex Banach space and C be a 
closed convex bounded nonempty subset of X. Let T: C-^€{C) be a non-
expansive mapping from C into the family of nonempty compact subsets of 
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C (equipped with the Hausdorjf metric). Then T has a fixed point, i.e. there 
exists x eC with x e Tx. 

PROOF. Let a be a point in C fixed throughout the proof. Let {Am} be 
a decreasing sequence of positive numbers and lim Aw=0. For each ra, 
the mapping Tm:C-*&(C) defined by Tm(x)=Àma+(l-ÀJTx is a 
contraction mapping and hence has a fixed point xm (Nadler [12]). Thus 
xme A.ma+(l—Am)Txm, and there exists ym e Txm with xm=Xma+ 
(1—Aw)j;m. Since C is bounded, we have 

\\xm - ym\\ = K II* - ƒ m II ->0 as m -^ oo. 

To facilitate the later description, we define i:{xm}->{ym} by i(xm)=ym 

for all m. We say that a sequence {xn} is an essential subsequence of 
{ym} if for some N>0, {xn}n^N is a subsequence of {ym}. 

Define the sequence {x^} to be {xm}, i.e. x{^}=xm for each m ^ l . Let Q 
be the first uncountable ordinal and ft be a countable ordinal, i.e. /?<£}. 
Suppose that {x^} has been defined for every ordinal a less than ft in such 
a way that {x$} is an essential subsequence of {x$} whenever d<y<ft. 
We define {x^} as follows: 

Case 1. j8 has an immediate predecessor, i.e., ft=oi+l for some 
oc<£2. Let za be the asymptotic center of {x$} in C. For each ra, let 
pm e Tza be chosen such that 

U P » - rô'n ̂  n z . - ^ I I . 
where yffl^iixffl); existence of such a/?w is a consequence of the non-
expansiveness of T and the compactness of Tza. Since Tza is compact and 
{pm} ^ 7za, there exists a convergent subsequence {/?wJ of {pm}. We then 
define {xffl} to be the sequence {xffi}}. 

Case 2. ft is a limit ordinal. Then there exists a strictly increasing 
sequence {ocn} of ordinal numbers such that an</J for each « and ocn—•/?, 
i.e. for every a</?, there exists « such that a<ocn</9. By dropping a 
finite number of terms if necessary, we may assume that {x^n)} is a sub­
sequence oï{xffl} wheneverp<n. We then define {x$} to be the sequence 
constructed from {x(^n)} by the diagonal process, i.e., {x^)}={x^w)}. Then 
{xffl} is an essential subsequence of {xffl} for each n. Since &n->ft, {xffl} 
is an essential subsequence of {x$} whenever a</?. 

Hence {xffl} are defined for all a<jQ. Now for each a < i i , we let ra be 
the asymptotic radius of {xffi} in C. Since {x$} is an essential subsequence 
of {x$} whenever d<y, and since r a ^ 0 for every a < Q , the transfinite 
sequence { r a : a<0} on the real line is decreasing and has lower bound 
0. Let s=inf{r a :a<Q}. Then clearly lim{ra:a<Q} exists and equals s. 
This can happen only if for some ft0<Q, f(X

==s f° r &U a with j8 0<a<Q. Let 
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a be a fixed ordinal with j80<a<fi . We shall show that the asymptotic 
center za of {x$} is a fixed point of T. 

From the way that {x\%+1)} is constructed from {xffl}, there exists a 
convergent sequence {pm} c Tza with lim pm~p E Tza such that 

(1) l l ^ - ^ + 1 ) | l ^ l k a ~ ^ + 1 ) H 

for all m, where ym+1)==i(x^+1)). Since {x(^+1)} is a subsequence of {x$}9 

and x ^ + 1 ) - j ^ + 1 ) - > 0 , we have from (1): 

lim sup ||p - ^ + 1 ) | | = lim sup \\p - y{«+1)\\ 
m m 

^ l imsup | | z a -x£ + 1 , | | 
m 

<! lim sup \\za - x^U = ra = ra+1. 
m 

It follows from the uniqueness of the asymptotic center that p=za+l and 
za=z0L+1, where za+1 is the asymptotic center of {x^+1)} in C. Hence z a = 
p e Tza, completing the proof. 

REMARK. Theorem 1 remains true if X is required only to be reflexive 
and uniformly convex in every direction [6], [3], since in such spaces the 
asymptotic center of a bounded sequence in a closed convex set is unique 
[10]. 

We do not know whether Theorem 1 is true when C is required only 
to be weakly compact and to have normal structure. For the application 
of asymptotic center under this setting, see [8] and [9]. 
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