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Adrian Albert, one of the foremost algebraists of the world and Presi­
dent of the American Mathematical Society from 1965 to 1967, died on 
June 6, 1972. For almost a year before his death it had become apparent 
to his friends that his manner had altered from its customary vigor to 
one which was rather subdued. At first they attributed this to a letdown 
which might have resulted from Albert's having recently relinquished a 
very demanding administrative position (Dean of the Division of Physical 
Sciences at the University of Chicago) that he had held for a number of 
years. Eventually it became known that he was gravely ill of physical 
causes that had their origin in diabetes with which he had been afflicted 
for many years. 

Albert was a first generation American and a second generation Ameri­
can mathematician following that of E. H. Moore, Oswald Veblen, 
L. E. Dickson and G. D. Birkhoff. His mother came to the United States 
from Kiev and his father came from England.1 The father had run away 
from his home in Yilna at the age of fourteen, and on arriving in England, 
he discarded his family name (which remains unknown) and took in its 
place the name Albert after the prince consort of Queen Victoria. Albert's 
father was something of a scholar, with a deep interest in English literature. 
He taught school for a while in England but after coming to the United 
States he became a salesman, a shopkeeper, and a manufacturer. Adrian 
was born when his father was fifty-five and his mother was thirty-five. 
It was a second marriage for both parents; his father's first wife had 
died in childbirth, and his mother was a widow with two children when 
she married his father. Adrian was the middle child of a set of three chil­
dren which his parents had in common. He grew up in a family that was 
formally orthodox Jewish but not strongly religious. In common with most 
immigrant families of the period the family had a strong drive toward 
assimilation and a determination to make the most of the opportunities 
offered by a comparatively free society undergoing rapid economic 
expansion with no limits in sight. 

Albert spent all of his school years in the Midwest and all but two of 
these in Chicago. He attended public schools at Chicago and at Iron 

1 We are indebted to Mrs. Frieda Albert for background material on Professor 
Albert's family. 
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Mountain, Michigan, and entered the University of Chicago in 1922 
where in rapid succession he earned a B.S. degree in 1926, an M.S. 
degree in 1927, and a Ph.D. in 1928. His advisor for his master's and his 
doctoral dissertations was Leonard Eugene Dickson. After his doctorate 
Albert spent a year at Princeton University as a National Research 
Council Fellow. He was attracted to Princeton by that great master of 
associative algebra theory, J. H. M. Wedderburn, who was then a profes­
sor at the university. Albert returned to Princeton in 1933, this time as one 
of the first group of temporary members of the Institute for Advanced 
Study. 

Albert married Frieda Davis in 1927, and they had three children, 
Alan, Roy, and Nancy, one of whom, Roy, died of diabetes at the age of 
twenty-three. 

Except for two years (1929-1931) as an Instructor at Columbia Uni­
versity and a number of visiting professorships (at Rio de Janeiro, Buenos 
Aires, University of Southern California, Yale, and the University of 
California at Los Angeles) all of Albert's academic career was spent at the 
University of Chicago. In 1960 he was named Eliakim Hastings Moore 
Distinguished Service Professor, and he served as Chairman of the Depart­
ment of Mathematics for three years until he became Dean of the Division 
of Physical Sciences in 1962. He held this position until 1971 when he 
reached the mandatory retirement age of sixty-five for the deanship. 

Of the mathematicians who influenced Albert most directly we should 
list the following: Dickson, who set the direction for almost all of Albert's 
research and whose books, Algebras and their Arithmetics (1923) and 
Algebren und ihre Zahlentheorie (1927), stimulated the great flowering of 
associative algebra theory of the 1930's; Wedderburn, whose elegant 
results and methods were an inspiration to Albert; Hermann Weyl, 
whose lectures on Lie groups and especially Lie algebras aroused Albert's 
interest in this subject—an interest which later broadened to encompass 
the whole range of nonassociative algebras; and above all, Solomon 
Lefschetz, who introduced Albert to the subject of Riemann matrices 
during his postdoctoral year (1928-1929) at Princeton. 

Mrs. Albert tells the story of this introduction in a charming fashion. 
Filling in some mathematical details it runs somewhat as follows. Albert 
had given a lecture on his dissertation at the Princeton mathematics club. 
In the audience were Dieudonné, J. H. C. Whitehead and Lefschetz, 
who had worked on the problem of multiplication algebras of Riemann 
matrices. Lefschetz apparently sensed that here was a brilliant young alge­
braist whose interests and power made him ideally suited to attack this 
problem. After Albert's talk he described the problem to him. A lively 
discussion ensued, mostly in the course of wanderings through the streets 
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of Princeton. This lasted for several hours, well past dinnertime, and 
Mrs. Albert had become quite concerned before Albert finally returned 
home, apparently in great excitement over his initiation into a fascinating 
area of classical mathematics which provided a strong motivation for the 
study of his chosen field of associative algebras. 

Lefschetz was certainly right in his judgment. Albert took to the prob­
lem on Riemann matrices with great enthusiasm, and as the structure 
theory of associative algebras was revealed by Albert, Brauer, Hasse and 
Emmy Noether, Albert could push forward the theory of multiplication 
algebras of Riemann matrices until he achieved a complete solution of the 
central problem (which we shall discuss below). For this achievement 
Albert was awarded the Cole Prize in algebra in 1939. 

This was a memorable year for Albert. Besides the Cole Prize award 
which he received that year, he was the Colloquium speaker of the 
Society for 1939. Moreover, he performed a feat, which we believe has 
never been matched, of having the book, Structure of Algebras, the 
subject of his lectures in print at the same time that the lectures were 
delivered. 

Around 1942 Albert's research interests shifted from associative to 
nonassociative algebras. He wrote many important papers in this field 
(which we shall discuss below). In 1965 Albert returned to his first love, 
structure theory of associative algebras. 

Besides his own important contributions to mathematics, Albert was 
instrumental in a number of ways in improving the status of the profession. 
He had a good deal to do with the establishment of government research 
grants for mathematics on more or less an equal footing with those in the 
other sciences. He was chairman of the Committee to Prepare a Budget 
for Mathematics for the National Science Foundation, 1950, and chairman 
of the Committee on a Survey of Training and Research Potential in 
the Mathematical Sciences, January 1955-June 1957 (which became 
known as "The Albert Committee"). He demonstrated that pure mathe­
maticians could be useful in applied and directed research by acting as a 
consultant for a number of government sponsored research agencies. For 
a number of years he was associated with the Institute for Defense Analysis 
as a member of its Board of Trustees and for a year as Director of its 
Princeton group. He directed the research project SCAMP for several 
summers and organized and directed the project ALP (known as "Albert's 
little project"). 

Albert was also a driving force in the creation of the summer research 
institutes which have become such an important part of the research 
activities of the Society, supported by the National Science Foundation. 
He was chairman of the committee which was responsible for the first 
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one of these—on Lie groups and Lie algebras—held at Colby College 
in Maine in the summer of 1953. 

Albert's role as a "statesman" for mathematics included membership 
on the Board of Trustees of the Institute for Advanced Study, chairman 
of the Consultative Committee of the Nice Congress, and Vice-President 
of the International Mathematical Union. 

His influence in mathematics extended also through a large number of 
gifted students. One of the most distinguished of these, Dan Zelinsky, 
has written a warm appreciation of Albert as a mathematician and as a 
person [188]. 

Naturally many important honors came his way. He was elected to the 
National Academy of Sciences in 1943 and was awarded honorary doc­
torates from Notre Dame, Yeshiva University, and the University of 
Illinois. He was elected a corresponding member of the Brazilian Academy 
of Sciences, honorary member of the Argentine Academy of Sciences, 
and of the Mexican Mathematical Society. He thoroughly enjoyed these 
honors, but he derived almost as much pleasure from the honors bestowed 
on fellow algebraists and on his friends. Most of all he enjoyed seeking 
out a colleague to whom he could communicate his latest discovery, 
which excited him greatly. 

Most of Albert's important discoveries fall neatly into three categories: 
I. Associative Algebras, II. Riemann matrices, III. Nonassociative alge­
bras. We proceed to give an indication of these and of some interesting 
isolated results which we shall mention under IV. Miscellaneous. 

I. Associative algebras. The Wedderburn structure theorems of 1907 
on finite dimensional associative algebras over a field focused attention 
on the division algebras in this class. In 1906 Dickson had given a con­
struction of a type of algebra called cyclic which included division alge­
bras. These contain a maximal subfield 3 which is cyclic over the base 
field g, that is, they are Galois with Galois group G=(s), a cyclic group 
generated by a single element s. Moreover, the algebras are generated by 
3 and an element u for which one has the relations 

uz — s(z)u, z G 3 , un = y, 

where n is the order of G and y is a nonzero element of gf. The cyclic 
algebra, denoted as ( 3 , s, y), constructed in this way has dimensionality 
n2 over g. In 1914 Wedderburn [184] proved an important sufficient con­
dition for ( 3 , s, y) to be a division algebra. He showed that this is the 
case if no power of y, ym with 0 < m < « , is a norm N^/^(z) of an element 
z e%. Using this criterion it is easy to construct division algebras of any 
dimension n2. 

In 1921 Wedderburn published some other important results on division 
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algebras [185]. Noting that one may as well consider these as algebras 
over their centers and so assume that they are central in the sense that the 
center is the base field $f, he showed that the dimensionality over this 
field is a square, n2. More generally, if 3Ï is central simple, by one of Wed-
derburn's structure theorems, 31 is the algebra Afr(!D) of rxr matrices 
with elements in a central division algebra D. Hence if the dimensionality 
of D over g is d2, then that of 31 over g is n2, where n=dr. Then n is 
called the degree of the central simple algebra 31 and d is its index. In 
his 1921 paper, Wedderburn showed also that any maximal subfield 3 of a 
central division algebra D is a splitting field, that is, the algebra X)3 = 
3 ®% £ is the matrix algebra Md(3), and he proved that every central 
division algebra of degree three is cyclic. Wedderburn showed also that 
Dickson's cyclic algebras were special cases of a more 'general type of 
algebra which is now called an abelian crossed product. Here the cyclic 
field 3 is replaced by a Galois extension field of the base field with Galois 
group an abelian group. 

Abelian crossed products were rediscovered by Cecioni [156], and these 
were further generalized by Dickson [158] and [159] to arbitrary crossed 
products based on any Galois extension field. 

Much of Albert's early work was concerned with the study of finite 
dimensional central simple algebras. His first important result on these was 
the theorem, proved in his dissertation [9], that every central division 
algebra of degree four (dimension sixteen) is a crossed product. This was 
the next case to be considered after Wedderburn's theorem that in degree 
three these algebras are cyclic. Albert improved the result in [11] by 
showing that the degree four central division algebras are crossed products 
based on abelian extension fields whose Galois groups are direct products 
of two cyclic groups of order two, and he gave a simpler proof of this 
result in [41]. In both of these papers the algebras of characteristic two 
were excluded. In a subsequent paper [53] he was able to overcome the 
difficulties of the characteristic two case. Brauer was the first to show 
that the central division algebras of degree four, unlike those of degree 
three, need not be cyclic. He constructed an example of such an algebra 
which was a tensor product of two (generalized) quaternion algebras 
[153]. Subsequently, Albert [45] constructed one which is not such a 
product. This was significant in view of another important theorem, 
proved by Albert [39], stating that a central division algebra X) of degree 
four is a tensor product of quaternion algebras if and only if 
D (g>5 £^M 4 (g) . 

The main goal of the structure theory of algebras of the period 1929— 
1932 was the determination and classification of finite dimensional 
division algebras over the field Q of rational numbers, or equivalently, 
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finite dimensional central division algebras over number fields. It was 
recognized quite early that this problem had two separate aspects: a 
purely algebraic one concerned with properties of algebras valid for all 
base fields, and an arithmetic one exploiting the arithmetic of number 
fields. Albert recognized the importance of the arithmetic method. How­
ever, he was handicapped in its use by the fact that he was unaware 
until rather late of the powerful results of algebraic number theory, 
notably, class field theory, which had been developed in Germany. He 
did make use of the arithmetic theory of quadratic forms to achieve 
definitive results on central division algebras of degree four over number 
fields and some important early results on the degree 2n case. For example, 
he proved that the former are cyclic and are not tensor products of quater­
nion algebras, and he proved that the only central division algebras over 
number fields which possess involutions, that is, antiautomorphisms of 
period two, are the quaternion algebras. This last result was needed for 
his study of Riemann matrices which we shall discuss below. 

Albert's main contributions were on the purely algebraic side. There is 
a substantial overlap between his results on central simple algebras and 
those of the German school of algebraists of the period of the early thirties, 
especially those of Richard Brauer and of Emmy Noether. Albert ob­
tained independently all the algebraic results on splitting fields, exten­
sions of isomorphisms and tensor products which were needed to obtain 
the fundamental theorems on division algebras over number fields. 
Of central importance for the algebraic theory is the group of classes of 
central simple algebras which was introduced by Brauer in 1929 [153]. 
We recall the definition. Two (finite dimensional) central simple algebras 
91 and 23 over a field g are said to be similar (~) if there exist positive 
integers m and n such that the matrix algebras Mw(9l) and Mn(93) are 
isomorphic. This is an equivalence relation. Denoting the similarity 
class of 9t as {31}, one defines a product of such classes by {9I}{93}= 
{9t <8>$ 93}. This gives a commutative group B($) called the Brauer 
group of the field %. The unit of the group is the set of matrix algebras 
Afn(3f), « = 1 , 2, • • • , and the inverse of {91} is {9top}, where 9top is the 
opposite algebra of 9Ï. In a beautiful paper [33] published in 1931, Albert 
essentially rediscovered the Brauer group. In this paper he proved Brauer's 
main theorem that J3($) is a torsion group; more precisely, if 9t has 
index m, that is, if the degree of the division algebra D in {91} is m, then 
{9t}m=1. Moreover, if e is the order of {91} in l?(g), then e and m have the 
same prime factors. The integer e is called the exponent of 91. Albert's 
proofs are based on Wedderburn's norm condition for cyclic algebras 
to be division algebras and theorems reducing considerations to the cyclic 
case; for example, if Î) is a central division algebra of prime degree/?, 
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then there exists an extension field 51 of the base field of dimensionality 
prime to p such that D*=5l ®^ £) is a cyclic division algebra over Si. 
Another key tool in Albert's method was the following theorem which he 
called the index reduction factor theorem: Let T) be a central division al­
gebra of degree d and 51 an extension field of the base field g with dimen­
sionality r. Then T)R=MQ((S), where (£ is a central division algebra over 
R and q is a divisor of d and r. Albert's primary interest in the theorem that 
{91}w = l was its consequence that any central division algebra is a tensor 
product of division algebras of prime power degrees which are determined 
up to isomorphism. This reduced most questions on these algebras to the 
prime power degree case. 

The high points of the structure theory of algebras of the 1930's were 
undoubtedly the theorem that every finite dimensional central division 
algebra over a number field is cyclic, and the classification of these algebras 
by a set of numerical invariants. The latter result amounts to the deter­
mination of the structure of the Brauer group for a number field. Besides 
the general theory of central simple algebras we have indicated, the 
proofs of these fundamental results required the structure theory of 
central simple algebras over p-adic fields due to Hasse, Hasse's norm 
theorem ("the Hasse principle"), and the Grünwald existence theorem for 
certain cyclic extensions of a number field. (Though it was discovered 
almost thirty years later by S. Wang [182] that Grünwald's formulation 
was incorrect, his error did not affect the theorem on algebras. See also 
Wang [183] and Hasse [161].) The first proof of the cyclic structure of 
central division algebras over number fields was given by Brauer, Hasse 
and Noether ([155], 1931). However, it seemed appropriate that Albert 
should share the honor of this achievement, and at Hasse's suggestion a 
joint paper ([42], 1932) was published by Albert and Hasse giving another 
proof of the theorem and the historical background of the problem. 

The results which had been obtained up to this point suggested the fol­
lowing two problems : (I) Is every finite dimensional central division alge­
bra a crossed product? (II) Is every one of prime degree cyclic? These are 
equivalent to the question of existence of a maximal Galois and maximal 
cyclic subfield, respectively, for these algebras. The results of Wedderburn 
and Albert imply that the answer to the second question is affirmative 
for the primes 2 and 3 and for the first for the degrees 2, 3, 4, 6 and 12. 
Quite recently Amitsur showed that the answer to the first question 
is negative by showing that for any n divisible by eight or by the square 
of an odd prime there exists a noncrossed product central division alge­
bra of degree n [150]. This leaves intact the second problem, and this is one 
on which Albert spent a good deal of effort. It is clear from the definition 
that if 91 is cyclic of degree n, then % contains an element u satisfying an 
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irreducible pure equation xn—y=0, y in the base field g. Does the converse 
hold? Albert showed this is the case if n=p, a prime ([59], 1934), and is 
not the case if « = 4 ([72], 1938). For the prime case this reduces the prob­
lem (II) to what appears to be a more tractable one: Does every central 
division algebra 21 of prime degree p contain an element not in g whose 
pth power is in g ? In 1938 Brauer showed that if 2t is of degree 5 there 
exists a field Si containing a tower of fields g ^ f t ^ i ^ 0 1 ^ s u c n that the 
degree [^i:g]=2=[R2 :5l1] and [5l:*y = 3, and 2t* is cyclic [154]. 
This led Albert to consider the following question : Suppose il is a quad­
ratic extension of g and 2la is cyclic of prime degree. Then is 21 cyclic? 
In four papers [142], [144], [147], [148] appearing between 1965 and 1970, 
including his retiring Presidential Address for the Society, Albert con­
sidered this problem for algebras of characteristic p and degree p. In 
spite of many ingenious arguments and partial results, he was unable to 
completely settle this question. 

A beautiful chapter in the structure theory of central simple algebras 
is the theory of /7-algebras which Albert developed in three papers [66], 
[67], [69] appearing in 1936 and 1937 (cf. also [181]). These are the 
central simple algebras of characteristic p whose division algebras X) 
in the Wedderburn theorem (^Mn(£))) have degree a power of p. The 
main results Albert proved about p-algebras are that any such algebra 2Ï 
is cyclically representable, that is, there exists an n such that Mw(2l) is a 
cyclic algebra, and the exponent of 21 is the minimum of the exponents of 
purely inseparable splitting fields for the algebra. 

A generalization of cyclic algebras in which the cyclic maximal subfield 
3 is replaced by a separable commutative subalgebra on which a cyclic 
group G acts in such a way that there are no proper subalgebras stabilized 
by G was considered by Albert in [75] following earlier work by Teich-
müller in [180]. Such generalized cyclic algebras arise naturally from cyclic 
ones when one extends the base field or forms the tensor powers of a cyclic 
algebra. 

Most of the important results on associative algebras which Albert 
obtained prior to 1939 can be found in an improved form in his AMS 
Colloquium book, Structure of Algebras. This extemely readable and 
beautifully organized book can still be recommended to a beginning student 
with a serious interest in structure theory and is an indispensable reference 
book for certain aspects of the theory, particularly the theory of jp-algebras, 
and of algebras with involution. 

II. Riemann matrices and associative algebras with involution. The 
theory of multiplications of Riemann matrices has its origin in algebraic 
geometry. On a Riemann surface of an algebraic curve of genus p, one 
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chooses p linearly independent integrals of the first kind each with 2p 
periods cojv, l^j^p, l^v^lp. The px2p matrix co = (cojv) of complex 
elements satisfies the Riemann relations: there exists a 2px2p nonsingular 
skew symmetric matrix C of rational elements such that a)Cta)=0 (lco the 
transpose of co) and j — XcoOco is positive definite hermitian. In the theory 
of so-called singular correspondences on the Riemann surface, one is led 
to consider the multiplications of co. These are the 2px2p rational mat­
rices A for which there exists &pxp complex matrix a such that aco = coA. 
The set of these A's is a finite dimensional algebra of matrices over g , 
the algebra of multiplications of co. 

Alternatively, the matrices co and their multiplications arise in the theory 
of abelian functions, defined to be meromorphic functions of p complex 
variables having a lattice of periods in Cp. 

There is another, formally simpler, formulation of Riemann matrices 
(the foregoing co) and their multiplications due to Weyl [186] which was 
suggested by geometric considerations. From the purely formal point of 
view one obtains the passage from the classical formulation to Weyl's by 
introducing the 2p X 2p matrix 

Put R= W~XLW. Then it can be shown that the matrix R has the following 
properties: (1) JR is real, that is R e M2v(R); (2) R2=-l2p; (3) S=CR is 
positive definite symmetric. Following Weyl, one calls a matrix R e Mn(R) 
(here n=2p) a Riemann matrix if R2= — \n and there exists a skew sym­
metric matrix C e Mn(Q) such that S=CR is positive definite symmetric. 
The matrix C, which is necessarily nonsingular, is called a principal 
matrix of R. The passage from Weyl's R to the classical co can be reversed. 
In Weyl's formulation the multiplications appear as the matrices A e Mn(Q) 
commuting with R. The set 31 of these multiplications is a finite dimensional 
algebra over Q called the multiplication algebra of the Riemann matrix 
R. Weyl observed that for most considerations the condition R2= — l 
( = — ln) plays no role. Dropping this, one obtains generalized Riemann 
matrices. Subsequently Albert [2], [65] considered further generalizations 
(including even a characteristic/?^0 situation!). For the sake of simplicity 
we shall stick to the case of Riemann matrices in Weyl's formulation. 

The important early work on multiplication algebras is due to Poincaré, 
Scorza, Lefschetz and Rosati. Poincaré achieved a reduction to so-called 
pure Riemann matrices for which the multiplication algebras are division 
algebras. Lefschetz considered the situation in which the multiplication 
algebras are commutative. Rosati observed the important fact that if A 
is in the multiplication algebra 31 of a Riemann matrix R and C is a 
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principal matrix, then A* = C~1 lACe%. The map A->A* is an involution 
(antiautomorphism of period two) in 9t. Rosati showed also that if A is 
symmetric under this involution (A*=A) then its characteristic roots are 
real, and if A * = —A then its characteristic roots are pure imaginaries [176]. 

The central problem on multiplication algebras of Riemann matrices is 
to determine necessary and sufficient conditions that a division algebra 
over Q be the multiplication algebra of a Riemann matrix. For a proof 
of sufficiency, one requires a construction of a Riemann matrix whose 
multiplication algebra is a given algebra 91 satisfying the conditions. 

Albert's work on Riemann matrices went hand in hand with the develop­
ment of the theory of division algebras. It culminated in the complete 
solution of the principal problem, which he published in three papers 
appearing in the Annals of Mathematics in 1934 and 1935 ([51], [57], 
and [63]). To achieve this required the development ab initio of the basic 
theory of simple algebras with involution. Albert presented improved 
versions of this theory in [65] and in his Structure of Algebras. We shall 
indicate first his results on algebras with involution. 

We assume throughout that 51 is finite dimensional simple over a field gf. 
If 9t has an involution/ (J:a->a* such that (a+Z>)*=ö*+&*, (aö)* = ocö* 
for a e g, (#Z>)*=Z>*a*), then the center (£ of 91 is stabilized by 7 and the 
restriction of / to (£ is either the identity map or an automorphism of 
period two. Accordingly, the involution is of first kind or second kind. 
Albert showed that 9t has an involution if and only if for any m = l , 
2, • • • , the matrix algebra Afw(9t) has an involution having the same effect 
on the center (which can be identified with the center of the matrix alge­
bra). He showed also that if 91 has an involution / and x is an element of 
91 whose minimum polynomial over the center Œ is irreducible and has 
coefficients that are /-symmetric, then 91 has an involution T leaving x 
fixed and having the same effect on (£ as J. Assuming 91 is of dimension n2 

over its center £ and contains a subfield of the form X ®% (£, where X 
is «-dimensional Galois over gf, and (£ is either 5 or a separable quadratic 
extension of g, he gave a necessary and sufficient condition in terms of a 
factor set for 91 to have an involution. This was used to give constructions 
which in principle yield all simple algebras with involution. Albert also 
used these results to prove that a central simple algebra has an involution 
if and only if it has exponent one or two in the Brauer group. One can 
combine this with one of the results of I to conclude that a central 
division algebra of degree four has an involution if and only if it is a tensor 
product of quaternion algebras. It seems unlikely that this is true for degree 
greater than four but we believe that this remains an open question. 

Albert proved that if a division algebra over a number field has an in­
volution of first kind, then the algebra is a quaternion algebra over its 
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center. Moreover, he determined the division algebras over number fields 
having involutions of second kind. He showed that any such algebra is 
cyclic ( 3 , s, y) over its center (£, where the cyclic field 3 over (£ has the 
form 3o ®<£ &> ^o t n e subfield of symmetric elements of (£, 3o cyclic 
over Ct0, and (£ separable quadratic over (£0. Moreover, y e t t , and if 
y is its conjugate in (£ over (£0, then yy is a norm of an element of 3o-
Conversely any division algebra having the indicated cyclic structure does 
have an involution of second kind. In a later paper [137], Albert obtained 
a similar result for division algebras of degree three (over their centers) 
for arbitrary base fields. 

These results, especially those on division algebras with involutions over 
number fields, provided the machinery for the solution of the problem of 
multiplication algebras for Riemann matrices. Using Rosati's theorem, 
one sees that the center G of such an algebra is totally real if the (Rosati) 
involution is of first kind and is a pure imaginary quadratic extension 
of a totally real field if the involution is of second kind. Besides these 
conditions on Qt, there are supplementary conditions on the quaternion 
division algebras and the cyclic algebras, which occurred in our description 
of the division algebras with involution over number fields, that must 
be fulfilled for these to be multiplication algebras of Riemann matrices. 
In Albert's proof of the sufficiency of the conditions he had derived, he 
made use of the Hilbert irreducibility theorem for number fields. 

In an exposition [178] of the theory of Riemann matrices, C. L. Siegel 
made some notable improvements on Albert's results. We should mention 
also that Weyl in [187] gave an alternative treatment of the subject based 
on Brauer factor sets. 

III. Nonassociative algebras. From about 1942 to 1965, when he 
returned to the problem of existence of noncyclic associative division alge­
bras of prime degree, most of Albert's research was in the area of non-
associative algebra: structure theory of nonassociative algebras, quasi-
groups, nonassociative division rings, and nondesarguesian projective 
planes. In our account of his contributions to this rather broad field of 
mathematics, we shall be selective, picking out what we consider his most 
important work—judged from the criterion of general mathematical 
interest. From this point of view, Albert's discoveries on Jordan algebras 
are undoubtedly his most important ones in nonassociative algebra, and 
these are perhaps on a par with his work on associative algebras and Rie­
mann matrices. We shall begin our account with this work, and we shall 
first sketch the story of Jordan algebras before Albert took them up as a 
subject of intensive study. 

The study of the class of algebras which now bear his name was initi­
ated in 1932 by the physicist, P. Jordan. His declared objective was to 
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achieve a better formalism for quantum mechanics than one based on 
selfadjoint operators in Hilbert space. Observing that the set of these 
operators is a vector space over R which is closed under the product 
A • B=i(AB+BA), where AB is the usual associative product, and that this 
symmetrized product is commutative and satisfies the identity (A2 • B) • 
A*=A2 • (B - A), he proposed to consider algebras in which the product 
composition satisfies these two conditions. He enlisted the help of von 
Neumann and Wigner in his study, and as a result of their collaboration, 
there appeared, in 1934, a paper entitled On an algebraic generalization 
of the quantum mechanical formalism which was a gem in the structure 
theory of algebras. In this paper [168], Jordan, von Neumann and Wigner 
obtained a complete determination of the finite dimensional (nonassoci-
ative) algebras over R satisfying the following conditions: I. Formal 
reality in the sense of Artin-Schreier, that is, the requirement that the only 
relations of the form 2 tf?=0 in the algebras are the trivial ones in which 
every ^ = 0 . II. Commutativity of the product (ab=ba) and the identity 
(a2b)a=a2(ba). 

They showed that the algebras satisfying these conditions are direct 
sums of ideals that are simple algebras, and they determined the simple 
ones as belonging to one of the following classes : 

(1) The vector space over R of nxn hermitian matrices with entries 
in R, C, or Hamilton's quaternion algebra H, endowed with the algebra 
structure in which the product is a • b=\{ab+ba) in terms of the usual 
matrix product ab. 

(2) The algebras over R with bases (l9el9e29* ' ' 9en) and multipli­
cation defined by the table eiei*=dij\9 1 the unit. 

(3) The algebra Ml of 3 X 3 hermitian matrices with entries in the alge­
bra O of Cayley numbers, endowed with the product a • b=\(ab+ba), 
where, as before, ab is the usual matrix product. 

Conversely, the algebras listed satisfy the above conditions. 
Now one defines a Jordan algebra over a field g of characteristic ^ 2 

as an algebra in which the product ab satisfies 

ab = ba, (a2b)a = a2(ba). 

Among these are included the special Jordan algebras which are isomorphic 
to subspaces of an associative algebra closed under the Jordan product 
a • b=i(ab+bd) and regarded as algebras relative to this product. Evidently, 
the algebras in Jordan, von Neumann, Wigner's class (1) are special. It is 
easy to see, using Clifford algebras, that this is the case also for algebras 
of their class (2). They conjectured that M% is not special, and they pro­
posed the proof of this as a problem to Albert, who showed that this is 
indeed the case: M\ is an exceptional (=nonspecial) Jordan algebra [52]. 
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After this brief encounter with the Jordan theory, a number of years 
elapsed before Albert returned to the subject. In a series of three papers 
[94], [97], [105] appearing in 1946, 1947 and 1950, Albert developed the 
basic structure theory of finite dimensional Jordan algebras over a field of 
characteristic not two. Since it is interesting to observe how the subject 
evolved in Albert's hands, we shall give a brief indication of the contents 
of each of these papers. 

In the first one he considered Jordan algebras defined concretely as Jordan 
algebras of linear transformations of a finite dimensional vector space, 
that is, subspaces of End 93 closed under the Jordan product A • B. He 
proved analogues for these algebras of Lie's and Engel's theorems on Lie 
algebras. Assuming the base field is of characteristic 0 (so trace arguments 
can be used) he showed that if the algebras contain no nil ideals they are 
direct sums of simple algebras. Moreover, he determined the simple 
algebras over an algebraically closed field of characteristic 0. This deter­
mination is quite similar to that of Jordan, von Neumann and Wigner's 
of simple formally real Jordan algebras: Class (2) is unchanged, and the 
modification required in the definition of class (1) is that R, C and H be 
replaced by the split composition algebras of dimensions 1, 2 and 4 over 
the given base fields. (These are the algebras which occur in Hurwitz's 
problem on quadratic forms permitting composition.) Naturally there is no 
class (3) since the algebras under consideration are special by definition. 
Actually Albert determined a more general class of so-called reduced 
algebras over an arbitrary field of characteristic 0. However, the result he 
obtained in the algebraically closed case is adequate to permit the deter­
mination of all the special simple algebras over an arbitrary field using the 
method of descent. This was done by Kalisch [169] and F. D. Jacobson 
and N. Jacobson [163]. 

In his second paper, Albert dealt with abstract finite dimensional 
Jordan algebras over any field of characteristic not two. He showed that 
nil algebras of this type are nilpotent in the sense that there exists an integer 
r such that the product of any r elements of the algebra in any association 
is 0. He proved that if the characteristic is 0 and % has no nil ideals =^0, 
then 31 is a direct sum of simple algebras, and he determined the simple 
ones over an algebraically closed field of characteristic 0. Here, one does 
have exceptional algebras, and the only simple one over an algebraically 
closed field of characteristic 0 is the analogue of M\ in which the classical 
Cayley algebra is replaced by a split Cayley algebra. We shall refer to this 
as the split exceptional simple Jordan algebra. 

In his third paper, Albert extended these results except for a small 
gap (which was filled by Jacobson in [165]) to the characteristic p^2 
case. 
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A particularly interesting class of Jordan algebras is that of the finite di­
mensional exceptional central simple Jordan algebras. If g is the base field 
and 5 is its algebraic closure, then 91 is in this class if and only if the exten­
sion algebra 91** is the split exceptional simple Jordan algebra previously 
defined. The theory of these exceptional algebras is intertwined with a 
number of other "exceptional" phenomena, notably, exceptional Lie 
groups and exceptional geometries (e.g. Cayley projective planes). Albert 
made a number of important contributions to this theory, sometimes in 
collaboration with others. We have already noted that his first paper on 
Jordan algebras established the exceptional character of Ml. In 1959 
Albert and Paige, in a joint paper [129], proved a much stronger result: 
Ml is not a homomorphic image of any special Jordan algebra. As a 
consequence of this and a result of Cohn's [157], one can conclude that 
the free Jordan algebra with three generators is not special. 

One can distinguish two types of exceptional simple Jordan algebras : 
the reduced ones and the division algebras. The first contains idempotents 
5^0, 1, and in the second the subalgebras generated by single elements and 
1 are associative fields. It can be shown that the reduced ones have the form 
<r>(03, y) the algebra of 3 x 3 matrices A with entries in some (generalized) 
Cayley algebra O, which are y-hermitian in the sense that y~x tÂy=A, 
where y is a 3-rowed diagonal matrix with entries in the base field, and 
Â is obtained by replacing each Cayley number entry a{j by its conjugate 
âij. The problem of determining conditions for the isomorphism of two 
such algebras was studied by Albert and Jacobson [122]. It was shown in 
this paper that isomorphism of the Jordan algebras implied isomorphism 
of the Cayley algebras occurring in their definitions, and they obtained 
some rather complicated supplementary conditions for isomorphism. 
These sufficed to give a complete classification of reduced exceptional 
simple Jordan algebras over number fields. (See also [179] and [175].) 

The first construction of exceptional Jordan division algebras is due 
to Albert [126], [141]. He showed also that no such algebras exist over 
number fields. On the other hand, if $ is any field over which there exist 
central associative division algebras of degree three (e.g. a number field), 
then there exist exceptional Jordan division algebras over the field gf(0 
obtained by adjoining an indeterminate t to g. Albert used a method of 
descent in his study of exceptional Jordan division algebras. Subsequently 
considerably simpler "rational" constructions were given by Tits [166, 
p. 412]. 

From the abstract point of view, a very natural class of algebras (or 
rings) is the class satisfying the power associativity condition : subalgebras 
(or subrings) generated by single elements are associative. This in­
cludes Jordan algebras, alternative algebras (defined by the identities 
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a2b=a(ab) and ba2=(ba)a)9 associative algebras, and a number of other 
interesting types of algebras. 

Albert initiated the study of power associative rings (without finiteness 
conditions) in a paper [98] published in 1948. The conditions of power 
associativity are that for any a one has the power formula 

aman ^am+n^ m, « = 1, 2, 3, ' ' ' , 

where am is defined inductively by a1 = a, ak=ak~1a. In [98] Albert showed 
that if the additive group of a nonassociative ring 31 has no torsion, then 
31 is power associative if and only if it satisfies the two identities aa2=as 

and (a2)2=a*. These results were obtained by some clever inductive argu­
ments based on linearizations of the assumed identities. These linear­
izations and commutativity yield also the crucial result that in a commu­
tative power associative ring the map eR: x~+xe, determined by an idem-
potent e, satisfies the quadratic equation (2ejR—l)(eR—l)eR=0. If one 
assumes that the additive group admits the operator J, then one obtains 
the Peirce decomposition relative to 

e:% = %(e) 0 %ll2(e) 0 %(e) where %(e) = {xt \ xte = ixt). 

One also has extensions of this to Peirce decompositions relative to orthog­
onal idempotents. In Albert's hands, these Peirce decompositions became 
powerful tools for investigating power associative rings. He obtained a 
number of striking results by this method. We mention two : 

Let 3t be a simple commutative power associative ring whose additive 
group contains no elements of orders 2, 3 or 5 and admits the operator 
•|. Suppose 31 contains two nonzero orthogonal idempotents e and ƒ 
such that e+f is not a unit. Then 31 satisfies the Jordan identity (a2b)a= 
a\bd) [105]. 

Any simple alternative ring containing an idempotent e^O, 1 is either 
associative or a Cayley algebra over its center [109]. 

The ultimate result on simple alternative rings is due to Kleinfeld 
[170], [171]. This states that all simple alternative rings are either associ­
ative or Cayley algebras. Albert's theorem was used as a step in the first 
proof of Kleinfeld's theorem. 

In [108] and [126] Albert proved a generalization for power associative 
rings of Wedderburn's celebrated theorem on the commutativity of 
finite associative divisian rings. Call an algebra over a field strictly power 
associative if all the algebras obtained by extending the base field are 
power associative. Also one defines a (nonassociative) division ring by 
the property that the left and right multiplications x->ax and x-+xa are 
bijective for any a^0 in the ring. Then Albert proved that any finite 
strictly power associative division algebra of characteristic ^ 2 is associ­
ative and commutative. Albert based his proof on the determination of the 
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simple Jordan algebras over an arbitary field due to F. D. Jacobson and 
N. Jacobson [163] and a result of his own on exceptional Jordan algebras 
[126], (Later McCrimmon gave alternative proofs which are independent 
of the structure theory [173], [174].) A number of constructions of non-
associative and noncommutative division rings are due to Albert [135], 
[108], [132]. These yield examples of nondesarguesian projective planes 
including some finite ones. 

Albert had a hand in the discovery of several new classes of simple 
Lie algebras of prime characteristic (see [160], [113] and [151]). Recently 
these results have taken on added luster because of the discovery by Kos-
trikin and Shafarevitch [172] that these Lie algebras can be regarded as 
characteristic p versions of infinite dimensional Lie algebras which had 
occurred in Eli Cartan's work on contact transformations. 

Albert and his students and followers also studied a number of other 
classes of nonassociative algebras defined by identities. Until now the 
results which have been obtained on these appear to be of interest only to 
specialists in the field. We shall therefore refrain from giving any indication 
of these results. Albert wrote several papers on general nonassociative 
theory. In one of these [84] he gave a definition of a radical for any finite 
dimensional nonassociative algebra. Since the theory of the radical is 
quite interesting and deserves to be better known than it is at present, 
we take this opportunity to sketch what we believe is an improved version 
of this theory. 

Let 31 be a finite dimensional nonassociative algebra over a field. Then 
3t is called simple if 3I2^0 and 91 has no ideals 5^0, 31. 31 is semisimple if it 
is a direct sum of ideals which are simple algebras. Following the pattern 
of associative ring theory, it is natural to define the radical rad 31 to be 
the intersection of the set of ideals $8 of 31 such that 31/® is simple. This 
definition implies that if no 93's, such that 31/93 is simple, exist then 31= 
rad 31. In any case 3I/rad 31 is semisimple or 0, and rad 31 is contained in 
every ideal D of 31 such that 31/X) is semisimple (see, for example, Jacobson, 
Structure of Rings, p. 41). This implies that A^O is semisimple if and only 
if rad 31=0. 

One obtains important information on an algebra 3t in looking at its 
multiplication algebra M(3l). This is the subalgebra of the associative alge­
bra End 31 of linear transformations in 31 generated by 1 and the left and 
right multiplications (aL: x-^ax, aR: x-+xa) of 31. The centralizer of 
Af(3I) in End 31 is called the centroid C(3I) of 31. The study of M(9I) and 
C(9I) was initiated by Jacobson [164] (see also Jacobson, Lie Algebras, 
pp. 290-295). Albert's results on rad 31, as we shall show, amount to a 
formula for rad 31 in terms of rad M(3l). We shall call 31 reductive if 31 
is a direct sum of ideals which are simple algebras and the ideal 
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3 = {.z|3Iz=0=z3I}. The elements of 3 are called absolute zero divisors. 
One can show that 31^0 is reductive if and only if M(3I) is semisimple. 
Hence 3t is semisimple if and only if M(3I) is semisimple and 0 is the 
only absolute zero divisor in 31. Now let 31 be the radical of M(3I) and 
91 the ideal in 31 such that 9Î/913I is the ideal of absolute zero divisors of 
31/9131. Then 9î=rad3I. Albert's order of ideas in his paper on the 
radical is the reverse of what we have indicated; namely, he uses the 
ideal 5R as his definition of the radical, then proves it has the two basic 
properties that 31/ 9Î is semisimple and 9Î is contained in every ideal Î) 
such that 31/D is semisimple. 

For certain important classes of algebras (e.g. associative, alternative, 
Jordan), rad 31 coincides with the maximal nil ideal. For Lie algebras of 
characteristic 0, rad 31 is the maximal solvable ideal. On the other hand, 
Albert has given an example of an algebra in which rad 31 is an associative 
field. We could not resist recording here a result on the radical which we 
have known for some time. This is a generalization of a well-known 
theorem of Hochschild's [162] on derivations of associative and Lie 
algebras. 

THEOREM. If % is a finite dimensional nonassociative algebra over a 
field of characteristic 0 then any derivation of% stabilizes rad 31. 

This can be proved by using the fact that the Lie algebra Der 31 of 
derivations is the Lie algebra of algebraic groups of automorphisms of 31. 
A more direct proof, which is applicable also in some situations in charac­
teristic p5^0, can be based on Albert's definition of rad 31. We observe 
first that if D is a derivation in 31, then 

[D, aL] = DaL - aLD = (Da)L and [D, aR] = (Da)R. 

Hence m-+[D, m] is a derivation in Af(3t) which we denote as D. If m e 
M(3l) and a e 31, then D(ma) = (Dm)a+m(Da). It is easily seen that D 
stabilizes rad 31 if D stabilizes rad M(3I). Our theorem then follows from 
Hochschild's theorem on associative algebras. 

In a paper [82] which appeared in 1942, Albert introduced a concept 
of isotopy for nonassociative algebras. Let 31 and 93 be nonassociative 
algebras. Then 31 and 23 are called isotopes if there exist bijective linear 
maps P and Q from S to 31 and a bijective linear map C from 31 to © 
such that for x, y e S we have 

xy = C((Px)(Qy)). 

If P=Q and C=P~X, we have P(xy) = (Px)(Py), so P is an isomorphism. 
Isotopy is an equivalence relation. If © and 31 are identical as sets, and 
C= 1, we call S a principal isotope of 3t. Define a new multiplication on 31 
by u o v=(PCu)(QCv). This, along with the given vector space structure, 
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gives a new algebra which is a principal isotope of 31, and since 

xy = C((Px)(Qy)) - C((PCC^x)(QCC^y)) = C(C^x o C^y), 

23 is isomorphic to the principal isotope defined by o. This reduces the 
consideration to that of principal isotopes. Albert defined isotopy also for 
quasigroups [87], and he proved a number of interesting results on iso­
topy of algebras and of quasigroups. While these have not played an im­
portant role in structure theory, the concept of isotopy has some impor­
tance in nondesarguesian geometry (see [134]). 

IV. Miscellaneous. Albert wrote a number of papers [50], [54], 
[57], [58], [64] on the structure of field extensions. He was particularly 
interested in explicit constructions of cyclic field extensions since these 
played an important role in his investigations of the structure of division 
algebras. Albert's results on cyclic extensions are presented in a connected 
fashion in Chapter IX of his algebra text Modern Higher Algebra. There are 
numerous references to these results in Structure of Algebras. For the 
case of degree/?6 and characteristic/?, one has an alternative method due 
to Witt, based on Witt vectors, which provides a better survey of cyclic 
and abelian extensions (see for example, Jacobson's Lectures in Abstract 
Algebra, vol. Il l , pp. 124-140). On the other hand, Albert's results on cyclic 
fields of degree pe and characteristic ?£p seem not to have been improved 
upon until now. 

Albert was fascinated by the problem of minimum number of generators 
for algebraic structures. He proved [92] that any separable associative 
algebra is generated by two elements and, with John Thompson [130], 
proved that the projective unimodular group over a finite field is generated 
by two elements, one of which has order two. 

In a joint paper with Muckenhoupt [120], he proved that for any field 
3f, any matrix of trace 0 in Mw(g) is an additive commutator [A, B] = 
AB—BA. This supplemented an earlier result by Shoda [177] for fields of 
characteristic 0. 

In [77] Albert proved that a finite dimensional ordered division algebra 
is necessarily commutative. This does not hold for infinite dimensional 
algebras, for Hilbert has given an example in the second edition of his 
Grundlagen der Geometrie of a "twisted" power series division ring which 
is not commutative and which can be ordered. It is interesting to note 
that Hubert's first attempt to give such an example in the first edition of 
Grundlagen can be seen to be wrong by invoking Albert's theorem! 

Another pretty result of Albert's gives a determination of the finite 
dimensional absolute valued algebras over R. By this we mean a (non-
associative) algebra over R which has a map a-+\a\ into R with the usual 
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properties : 
(1) H ;>0and | a |=0 i f and only i f o = 0 ; 
(2) \a+b\^\a\ + \b\; 
(3) |aa| = |a| \a\ for a G R; 
(4) \ab\ = \a\\b\. 

It had been conjectured by Kaplansky that if such an algebra has a unit, 
then it is alternative, and hence, by a classical result, it is necessarily 
either R, C, Hamilton's quaternion algebra H, or Cayley's octonions O. 
Moreover, in all cases |a| = |oâ|1/2, where â is the usual conjugate. Albert 
proved this [96] and also showed that if all the conditions except the exist­
ence of a unit hold, then the algebra is an isotope of R, C, H or 0 . 
This result was extended [101] to algebraic algebras over R not assumed 
to be finite dimensional. 

Albert's last published paper [149]—published posthumously—proves 
an interesting theorem on quaternion algebras: If 3tx and 3l2 are two 
(generalized) quaternion division algebras over a field g and 5lx ®% 9l2 

is not a division algebra, then 9tt and 2I2 have a common quadratic 
subfield. 

Our recital of Albert's major achievements gives no indication of his 
methods or, more broadly speaking, of his mathematical style, which 
was highly individualistic. Perhaps its most characteristic qualities were 
the directness of his approach to a problem and his power and stamina to 
stick with it until he achieved a complete solution. He had a fantastic 
insight into what might be accomplished by intricate and subtle calculations 
of a highly original character. At times he could have obtained simpler 
proofs by using more sophisticated tools (e.g. representation theory), 
and one can almost always improve upon his arguments. However, this 
is of secondary importance compared to the first breakthrough which 
establishes a definitive result. It was in this that Albert really excelled. 
He regarded himself as a "pure" algebraist and in a sense he was. How­
ever, his best work—the solution of the problem of multiplication alge­
bras of Riemann matrices—had its origin in another branch of mathema­
tics. Moreover, he could exploit analytic and number theoretic results 
when he needed them—as he did in this instance. 
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