ON THE EXTENSION OF BOUNDARY INTEGRABLE ALMOST COMPLEX STRUCTURE¹

BY GARO K. KIREMIDJIAN

Communicated by I. M. Singer, March 6, 1974

1. **Introduction.** Let $\{M, M'\}$ be a finite Kähler manifold, i.e., M' is a complex Kähler manifold, M is an open submanifold of M' with compact closure, $M_0 = bM$, the boundary of M, is a C^{∞} submanifold of M', and for each $p \in M_0$ there exists a coordinate neighborhood U of p with real coordinates t^1, \dots, t^{2n-1} , r such that r(q) < 0 for $q \in U \cap M$ and r(q) > 0 for $q \in U \cap (M' - M)$. It is assumed that the following conditions hold:

A. For each boundary point the Levi form has at least two positive eigenvalues.

B. There exists a constant $c_0>0$ such that for all $u \in C^{0,q}(\overline{M}, \Theta)$, q=1,2 $((2 \square - \triangle)u,u) \geqq c_0(u,u)$ where Θ is the holomorphic tangent bundle of M', $C^{p,q}(\overline{M}, \Theta)$ is the space of all C^{∞} Θ -valued (p,q)-forms extendible to a neighborhood of \overline{M} , \square (resp., \triangle) is the complex (resp., the real) Laplacian on $C^{p,q}(\overline{M}, \Theta)$ and (,) is the L_2 -inner product over M (see [2]).

Then the main result of this note states that a sufficiently small integrable almost-complex structure on M_0 can be extended to a complex structure on M. A complete proof will appear elsewhere; a brief outline follows.

However, we first take a closer look at condition B. Let D be the covariant differentiation operator associated with the connection θ of the metric g on M', i.e.,

$$Du = du + \theta \wedge u = \bar{\partial}u + \tilde{\partial}u$$

for $u \in C^{p,q}(\overline{M}, \Theta)$. Let D^* and $\overline{\partial}^*$ be the formal adjoints of D and $\overline{\partial}$, respectively. Then $\triangle = DD^* + D^*D$ and $\square = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$. Since g is Kähler, $\triangle = 2\square - K$, $K = \sqrt{-1}(e(s)\Lambda - \Lambda e(s))$, where

$$e(s)u = \bar{\partial}\theta \wedge u, \qquad \Lambda u = *^{-1}(\rho \wedge *u),$$

* is the Hodge star operator and ρ is the Kähler form of g. We refer

AMS (MOS) subject classifications (1970). Primary 32G99; Secondary 32G05, 35J60, 32J25.

¹ This research was supported in part by NSF grant GP 33942X1.

to [3, pp. 482-483], for verification of this identity. Hence, condition B requires the existence of a constant $c_0>0$ such that $(Ku, u) \ge c_0(u, u)$ for all $u \in C^{0,q}(\overline{M}, \Theta)$, q=1, 2. Now it is established in [2, p. 276], that if the scalar curvature is sufficiently negative, then one has the stronger result $\langle Ku, u \rangle_x \ge c_0 \langle u, u \rangle_x$ for all $x \in M'$, where $\langle \cdot, \cdot \rangle_x$ is the inner product at the point x, i.e., Θ is $W^{0,q}$ -elliptic. It is also shown in [2] that the criterion of W-ellipticity is satisfied for a large class of bounded homogeneous domains in C^n provided with the Bergman metric. More generally, let M' be a manifold whose universal covering space \widetilde{M}' is isomorphic to $D_1 \times \cdots \times D_r$, where D_i is a bounded irreducible symmetric domain with $\dim_C D_i \ge 3$. Then Θ is $W^{0,q}$ -elliptic for $0 \le q \le 2$, and condition B will hold for any relatively compact open submanifold M of M' with smooth boundary.

- 2. **Definitions and notation.** Let M_0 be a C^{∞} manifold of real dimension 2n-1 and let CTM_0 be the complexified tangent bundle.
- 2.1. DEFINITION. An almost-complex structure on M_0 is given by a complex subbundle E'' of CTM_0 of fiber complex dimension n-1 such that $E'' \cap \bar{E}'' = \{0\}$.
- 2.2. DEFINITION. The almost-complex structure E'' on M_0 is integrable if, for any two sections L and L' of E'' over an open set U of M_0 , [L, L'] is also a section of E''.

We now assume that M_0 is the boundary of a finite complex manifold $\{M, M'\}$. The complex structure on M' induces an integrable almost-complex structure T'' on M_0 .

2.3. DEFINITION. The almost-complex structure E'' on M_0 is of finite distance from T'' if $\pi'' | E'' : E'' \to T''$ is an isomorphism where $\pi'' : CTM_0 \to T''$ is the projection.

In this case $E'' = \{X - \tau \circ \varphi(X) | X \in T''\}$ where $\tau : \Theta | M_0 \to T' \oplus CF$ is an isomorphism, $T' = \overline{T}''$, CF is the complexification of a real one-dimensional subbundle F of TM_0 such that $CTM_0 = T' \oplus T'' \oplus CF$ and

$$\varphi = -\tau^{-1} \circ (\mathrm{id} - \pi'') \circ (\pi'' E'')^{-1} \colon T'' \to \Theta \mid M_0,$$

i.e., φ is a $\Theta|M_0$ -valued C^∞ differential form on M_0 of type $(0, 1)_b$. Conversely, any such differential form φ gives rise to an almost complex structure E'' on M_0 . We will denote E'' by T_{φ}'' . As in the case of complex manifolds, there exists a $\Theta|M_0$ -valued C^∞ differential form Φ on M_0 of type $(0, 2)_b$ such that $\Phi = 0$ if and only if T_{φ}'' is integrable.

Let φ be a T'-valued form and let $\omega \in C^{0,1}(\overline{M}, \Theta)$ be such that $t\omega$, the complex tangential part of ω , is equal to φ on M_0 . Let $\Omega = \overline{\delta}\omega - [\omega, \omega]$. If T''_{ω} is the almost complex structure on M induced by ω , then one can show that $T''_{\omega} = CTM_0 \cap T''_{\omega}$ and $t\Omega = 0$ on M_0 if and only if $\Phi = 0$.

3. The main result. Now we can formulate the following extension problem.

THEOREM. Let $\{M, M'\}$ be a finite complex Kähler manifold such that conditions A and B in §1 are satisfied. Let φ be a T'-valued C^{∞} differential form of type $(0,1)_b$ with sufficiently small Hölder norm $|\varphi|_{k+\alpha}$, $0<\alpha<1$, for some integer k>0 depending on n. Assume that T''_{φ} is integrable. Then there exists $\omega \in C^{0,1}(\overline{M}, \Theta)$ such that $\Omega=0$ and $t\omega=\varphi$ on M_0 .

We first consider the quadratic form

$$Q(u,v) = \frac{1}{2}[(Du,Dv) + (D^*u,D^*v) + (Ku,v)] - 2([\psi,u],\bar{\partial}v)$$

for some $\psi \in C^{0,1}(\overline{M}, \Theta)$ with sufficiently small norm and $u, v \in \mathfrak{B} = \{\omega \in C^{0,1}(\overline{M}, \Theta) | t\omega = 0 \text{ on } M_0\}$. One can easily check that by condition B, const $N^2(u) \leq |\text{Re } Q(u, u)| \leq \text{const } N^2(u)$ where Re stands for the real part of Q(u, u), and $N^2(u) = ||u||^2 + ||Du||^2 + ||D^*u||^2$. Hence, if $||u||_s$ is the Sobolev s-norm of u, then $||u||_1 \leq \text{const} |\text{Re } Q(u, u)|$.

It follows from the theory developed in [1] and [4] that for each $\sigma \in C^{0,1}(\overline{M}, \Theta)$ there exists a unique $u \in \mathcal{B}$ such that $Q(u, v) = (\sigma, v)$ for all $v \in \hat{\mathcal{B}}$, the completion of \mathcal{B} with respect to the norm N such that

$$||u||_{s+2} \leq c_s ||\sigma||_s;$$

(2)
$$L_{w}u = \frac{1}{2}(DD^{*} + D^{*}D + K)u - 2\bar{\partial}^{*}[\psi, u] = \sigma;$$

$$(3) tD^*u = 0 on M_0;$$

$$|u|_{k+\alpha+2} \le c'_k |f|_{k+\alpha}$$

for sufficiently large k. The constants c_s and c'_k depend on s and k and on the derivatives of ψ up to order s and k, respectively. If $|\psi|_{k+\alpha}$ is sufficiently small we may assume that c'_k in (4) depends only on k.

We observe that $D^*u = -*\tilde{\partial} * u - *\tilde{\partial} * u$, and since u is a form of type (0,1), $\tilde{\partial} * u = 0$ and $D^*u = \tilde{\partial} * u$. On the other hand for a Kähler metric g the complex Laplacian $\Box = \tilde{\partial} \tilde{\partial} * + \tilde{\partial} * \tilde{\partial}$ is $\frac{1}{2}(DD^* + D^*D + K)$, and if $\sigma = \tilde{\partial} * h$ for $h \in C^{0,2}(\overline{M}, \Theta)$, then (3) and Stokes' theorem imply that $L_w u = \sigma$ if and only if

(5)
$$\bar{\partial}^* \bar{\partial} u - 2\bar{\partial}^* [\psi, u] = \bar{\partial}^* h.$$

We now consider the nonlinear differential system $\bar{\partial}^*\Omega = 0$. Let $\omega_0 \in C^{0,1}(\overline{M}, \Theta)$ be an extension of φ such that $|\omega_0|_{k+\alpha} \leq \operatorname{const}|\varphi|_{k+\alpha}$. One can inductively construct a sequence of approximate solutions $\omega_{m+1} = \omega_m + u_m$, where u_m is the solution of (5) with $tu_m = t\bar{\partial}^*u_m = 0$ on M_0 , $\psi = \omega_m$, $h = -\Omega_m = -\bar{\partial}\omega_m + [\omega_m, \omega_m]$. Since $|\bar{\partial}^*\Omega_m|_{k+\alpha-2} \leq \operatorname{const}|u_m|_{k+\alpha}$, (4) implies that there exists a constant c > 0 such that $|\omega_{m+1} - \omega_m|_{k+\alpha} \leq c|\omega_m - \omega_{m-1}|_{k+\alpha}^2 \leq c$

for $m=1, 2, \cdots$. This is enough to conclude that there exists a Θ -valued form ω of type (0, 1) and of class $C^{k+\alpha}$ on \overline{M} such that $\overline{\partial} *\Omega = 0$, $t\omega = \varphi$ on M_0 , and $|\omega|_{k+\alpha} \leq \operatorname{const}|\varphi|_{k+\alpha}$.

Now it can easily be shown that $\partial\Omega=2[\omega,\Omega]$. By condition A and the fact that the normal part of $*\#\Omega$ vanishes on M_0 , the basic estimate of the ∂ -Neumann problem holds for $*\#\Omega$, i.e.,

$$E(* \#\Omega) \le \operatorname{const}(\|\Omega\|^2 + \|\bar{\partial}\Omega\|^2 + \|\bar{\partial}^*\Omega\|^2).$$

For the definition of the norm E, we refer to [5] and [6]; the operators * and # are defined in [2]. Then by condition B and the complete continuity of E, one can obtain the estimate $\|\bar{\partial}\Omega\| \le c_0 |\omega|_{1,\alpha} \|\bar{\partial}\Omega\|$ for some constant c_0 . Thus $\bar{\partial}\Omega=0$ if $|\varphi|_{k+\alpha}$ is sufficiently small. Since $t\Omega=0$ on M_0 , $\bar{\partial}\Omega=0$, and $\bar{\partial}^*\Omega=0$, condition B implies that $\Omega=0$.

Finally, it follows from the construction of approximate solutions that $\omega = \omega_0 + w$, where w is of class $C^{k+\alpha}$ and $\bar{\partial} * w = 0$. Then $\bar{\partial} * (\bar{\partial} \omega - [\omega, \omega]) = 0$ can be expressed as

$$\square w - \tilde{\partial}^*(2[\omega_0, w] + [w, w]) = \tilde{\partial}^*([\omega_0, \omega_0] - \tilde{\partial}\omega_0).$$

This equation is elliptic if $|\varphi|_{k+\alpha}$ is sufficiently small. Since ω_0 is of class C^{∞} , w is also of class C^{∞} .

REFERENCES

- 1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92. MR 28 #5252.
- 2. A. Andreotti and E. Vesentini, On deformations of discontinuous groups, Acta Math. 112 (1964), 249-298. MR 29 #6503.
- 3. E. Calabi and E. Vesentini, On compact, locally symmetric Kähler manifolds, Ann. of Math. (2) 71 (1960), 472-507. MR 22 #1922b.
- 4. G. Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Math., no. 8, Springer-Verlag, Berlin and New York, 1965. MR 35 #536.
- 5. J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112-148. MR 27 #2999.
- 6. J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451-472. MR 31 #1399.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305