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In this note we shall announce results concerning the structure of 
£^0^)> the space of 2s-valued functions integrable with respect to a meas­
ure m:H->L(E, F), where L(E,F) is the class of bounded operators 
from the Banach space E into the Banach space F. The bilinear integration 
theory introduced here is more restrictive than the one developed by Bartle 
[1], but it is general enough to allow a norm to be denned on the inte­
grable functions and to permit the study of weak compactness and 
convergence theorems; moreover, LE(m) lends itself in a natural way 
to the study of continuous operators T: CE(S)->F, where the domain is 
the space of continuous is-valued functions defined on the compact 
Hausdorff space S as follows : By Dinculeanu's representation theorem 
[6], there exists a unique regular finitely-additive measure m : 2—•£(£", F* *), 
where 2 is the family of Borel subsets of S, such that T(f)=$fdm. 
If Tis a weakly compact operator, Brooks and Lewis [2] have shown that 
m is countably additive, with range in L(E, F). In addition, the set 
N={\mz\:z e F*} is relatively weakly compact in ca(2)—here mz is the 
2s*-valued measure defined by mz(A)e=(m(A)e, z), and \mz\ is the total 
variation function of mz. Conversely, if N has the above property and E is 
reflexive, then T is weakly compact. A natural question is whether a 
Lebesgue space LE(m)=> CE(S) of m-integrable functions can be defined. 
If so, what convergence theorems can be proved, and how are the weakly 
compact sets characterized ? 

The setting is as follows. Let S be a cr-algebra of subsets of a set T, 
and ra:2-*L(is, F), a countably additive measure be given such that m 
is strongly bounded, that is, mE ^ ( /Q-^0 , whenever (A{) is a disjoint 
sequence of sets (mE F is the semivariation of m with respect to E and 
F [6]). It follows that N={\mz\:zeF*} is relatively weakly compact in 
ca(S). Let X be a positive control measure for m such that X^.mE E and 
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m«A. The set FE{N) is the set of A-measurable ^-valued functions/such 
that 

N(f) = sup{ f l/l d |mj :z e F f ) < oo. 

For every ƒ e FE(N)9 define the integral ƒ ƒ dm e F** by (z, §fdm)=z 
$fdmzi for z e F * . The closure of the is-valued simple functions in 
FE(N) is defined to be L#(m). By L^m) we denote the Banach space of 
scalar m-integrable functions. The Vitali convergence theorem and the 
Lebesgue dominated convergence theorem are valid in L^(m), but the 
Beppo Levi theorem fails in general. We say that m has the Beppo Levi 
property if every increasing sequence of positive simple functions /w , 
with supw JVX/nXoo, is a Cauchy sequence in L^ra). In Theorem 1 
below, it is seen that this crucial property is satisfied under mild conditions. 
In the case E is the scalar field, L\m) includes the Bartle-Dunford-
Schwartz integral as defined in [7, Chapter IV]. 

The authors have developed a more general theory in which Lebesgue 
spaces LE(N) are studied, where N is a family of positive measures 
not necessarily arising from a vector measure as above. The theory 
of associate spaces is introduced and representations of operators 
T:LE(N)-+F are given. To cover the case when S is a locally compact 
space, we construct the theory on <5-rings by means of localizable control 
measures. In this announcement we shall restrict ourselves to the above 
special case and a few representative theorems will be stated. The complete 
version of these results will appear in [4]. 

THEOREM 1. If $ f dm e F for every fe FE(N), then m has the Beppo 
Levi property. In particular, if F is weakly sequentially complete, then m 
has the Beppo Levi property. 

INDICATION OF THE PROOF. One can show that it is sufficient to prove 
that m has the Beppo Levi property if whenever ƒ e FE(N) and ^ 4 n \ 0 , 
then N(fxAn)->0. If we deny this, there exist z n e F * such that 
$An l/l d\mZn\>e>Q for every «, for some e. By proving that 

J l/l d\mz\ = sup! J gdmZn g is simple, |g| <; | ƒ | 

we may assume: (*) | j A n fn dmzJ>e, n= 1,2, • • • , where the fn are simple 
E-valued functions. Form L^o(2i0, m), where 2 0 is a separable c-algebra 
containing (An) such t h a t / and fn are 20-measurable; E0 is the closure of 
the span off(T)u Un^i fn(T). Let F0^F be the separable Banach space 
generated by {ƒ h dm:h e L^o(20 , m)}. By using the Lebesgue dominated 
convergence theorem in the spaces L#o(|mJ), we see that heFEo(N) 
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implies ƒ h dm e F0, whenever h is S0-measurable. By a diagonal process, 
assume that (zn) converges on a countable dense subset of F0; hence 
(zn) converges on F0. Let T=22- n |m , J , and define AÇZ09f) to be the 
space of Immeasurable functions h:T->E0 such that |A|^I/I a.e. r ; 
thus A(Z09f) is a complete subset of L#0(£0>

 T)« Define Tn:LEo(Z09 r)-> 
F0 by Tn(h)=:$ hdmZn; note that | | r n | | ^ 2 n . It follows that lim Tn(A) 
exists for every h e >4(20, ƒ ) . Using the Baire category theorem, we deduce 
that (Tn) is equicontinuous at zero on A(20,f). However, since 

$An \fn\ dr^$An l/l dr-+°> w e h a v e l i m n IAn fn dmZk=0 uniformly in k. 
This contradicts (*). 

Using the above theorem, we are able to give sufficient conditions 
for a set to be relatively weakly compact in LE(m). 

THEOREM 2. Assume that E is reflexive and F is weakly sequentially 
complete. Suppose K^LE(m) is a set satisfying: 

(1) Kis bounded', 
(2) N(fxAJ~+0 uniformly for f'e K, whenever An\ 0. 
Then K is relatively weakly compact. 

INDICATION OF THE PROOF. By the Eberlain-Smulian theorem, we may 
assume that K is a sequence of functions fn. Let A be a bounded control 
measure for m\ hence X(A)^N(%A), for AeH, and iV«A uniformly. 
We assert that limAfU)_>0 N(fxA)=0 uniformly for ƒ G K. By hypothesis 
the set 0 = {J l/l d\mz\:ze F*} is uniformly countably additive. Also 
each measure in Q is absolutely continuous with respect to X. By [3, 
Theorem 2.1] Q<^X uniformly. This implies the above assertion. Since 
X^N, we see that K is a bounded subset of LE(X); moreover, 
limAU)^0 $A l/l dX=0 uniformly for ƒ G K. Hence AT is relatively weakly 
compact in LE(X) [5], [3]. Assume that (fn) converges weakly to 
f0eLE(X); we shall show that (fn) converges weakly to / 0 in LE(m). It 
can be shown that L#(ra)* consists of is*-valued measures of finite 
total variation, absolutely continuous with respect to X. Let a e LE(m)*. 
Using the Phillips theorem, we prove that there exists a g e LE*(m) such 
that a(h)=jghdX, for hsLE{m). The sequence (gfn) is bounded in 
L\X), since | | g / J i ^ l M | ^ / n ) ; note also that \\mkU)_^ $A \gfn\ dX=0 
uniformly in n. As a result, (gfn) is relatively weakly compact in LX{X). 
Thus we may assume that (gfn) converges weakly to h G LX(X). Let (Bk) 
be a sequence of sets with union equal to T such that g is bounded on each 
Bn. For fixed k, g%c G LE'*(X)=LE(X)*, for every CeY*nBK. Thus 
5cgfn M~*Scgfo dX and ScfngM-+$c h <&- Consequentlygf0=h a.e. X on 
Bk, hencegfo=h a.e. X on T. Therefore: (#)g/0 G L^iXJfor everyg G LE(m)*. 
To show that/o G Z^(ra) we proceed in two stages. First of all, we define 
the "associate space" FE*(N') of FE(N) to be the space of A-measurable 
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functions g:T->E* such that gfeL1{X) for every heL^im). Then we 
show that when m has the Beppo Levi property (which, by Theorem 1, 
it does in this instance), then f0 G Lx

E(m) if and only if gf0 e D-(X) for 
every geFE*(N'). Then we prove that FE*(N')=l}E(m)*. The lengthy 
details are omitted. This, in conjunction with (#) , implies that 
fQeLE(m). 

COROLLARY 1. Let F be weakly sequentially complete. Suppose (fn)n^0
 c 

L^m). If §A fn dm->$Af0 dm for every A e 2 , thenfn-+f0 weakly in Lx{m). 

From the construction in the proof of Theorem 2, we deduce the fol­
lowing corollary. 

COROLLARY 2. If E is reflexive and F is weakly sequentially complete, 
then Lx

E{m) is weakly sequentially complete. 
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