LEBESGUE SPACES FOR BILINEAR VECTOR INTEGRATION THEORY

BY JAMES K. $BROOKS^1$ AND NICOLAE DINCULEANU²

Communicated by Robert Bartle, December 12, 1973

In this note we shall announce results concerning the structure of $L_E^1(m)$, the space of E-valued functions integrable with respect to a measure $m: \Sigma \rightarrow L(E, F)$, where L(E, F) is the class of bounded operators from the Banach space E into the Banach space F. The bilinear integration theory introduced here is more restrictive than the one developed by Bartle [1], but it is general enough to allow a norm to be defined on the integrable functions and to permit the study of weak compactness and convergence theorems; moreover, $L_E^1(m)$ lends itself in a natural way to the study of continuous operators $T: C_E(S) \rightarrow F$, where the domain is the space of continuous E-valued functions defined on the compact Hausdorff space S as follows: By Dinculeanu's representation theorem [6], there exists a unique regular finitely-additive measure $m: \Sigma \to L(E, F^{**})$, where Σ is the family of Borel subsets of S, such that $T(f) = \int f dm$. If T is a weakly compact operator, Brooks and Lewis [2] have shown that m is countably additive, with range in L(E, F). In addition, the set $N = \{|m_z| : z \in F_1^*\}$ is relatively weakly compact in $ca(\Sigma)$ —here m_z is the E*-valued measure defined by $m_z(A)e = \langle m(A)e, z \rangle$, and $|m_z|$ is the total variation function of m_z . Conversely, if N has the above property and E is reflexive, then T is weakly compact. A natural question is whether a Lebesgue space $L_E^1(m) \supset C_E(S)$ of m-integrable functions can be defined. If so, what convergence theorems can be proved, and how are the weakly compact sets characterized?

The setting is as follows. Let Σ be a σ -algebra of subsets of a set T, and $m: \Sigma \to L(E, F)$, a countably additive measure be given such that m is strongly bounded, that is, $\tilde{m}_{E,F}(A_i) \to 0$, whenever (A_i) is a disjoint sequence of sets $(\tilde{m}_{E,F})$ is the semivariation of m with respect to E and F [6]). It follows that $N = \{|m_z| : z \in F_1^*\}$ is relatively weakly compact in $\operatorname{ca}(\Sigma)$. Let λ be a positive control measure for m such that $\lambda \leq \tilde{m}_{E,F}$ and

AMS (MOS) subject classifications (1970). Primary 46E30, 28A45.

¹ Supported in part by NSF Grant GP 28617.

² Supported in part by NSF Grant GP 31821X.

 $m \ll \lambda$. The set $F_E(N)$ is the set of λ -measurable E-valued functions f such that

$$N(f) = \sup \left\{ \int |f| \ d \ |m_z| : z \in F_1^* \right\} < \infty.$$

For every $f \in F_E(N)$, define the integral $\int f dm \in F^{**}$ by $\langle z, \int f dm \rangle = \int f dm_z$, for $z \in F^*$. The closure of the E-valued simple functions in $F_E(N)$ is defined to be $L_E^1(m)$. By $L^1(m)$ we denote the Banach space of scalar m-integrable functions. The Vitali convergence theorem and the Lebesgue dominated convergence theorem are valid in $L_E^1(m)$, but the Beppo Levi theorem fails in general. We say that m has the Beppo Levi property if every increasing sequence of positive simple functions f_n , with $\sup_n N(f_n) < \infty$, is a Cauchy sequence in $L^1(m)$. In Theorem 1 below, it is seen that this crucial property is satisfied under mild conditions. In the case E is the scalar field, $L^1(m)$ includes the Bartle-Dunford-Schwartz integral as defined in [7, Chapter IV].

The authors have developed a more general theory in which Lebesgue spaces $L_E^1(N)$ are studied, where N is a family of positive measures not necessarily arising from a vector measure as above. The theory of associate spaces is introduced and representations of operators $T: L_E^1(N) \to F$ are given. To cover the case when S is a locally compact space, we construct the theory on δ -rings by means of localizable control measures. In this announcement we shall restrict ourselves to the above special case and a few representative theorems will be stated. The complete version of these results will appear in [4].

THEOREM 1. If $\int f dm \in F$ for every $f \in F_E(N)$, then m has the Beppo Levi property. In particular, if F is weakly sequentially complete, then m has the Beppo Levi property.

INDICATION OF THE PROOF. One can show that it is sufficient to prove that m has the Beppo Levi property if whenever $f \in F_E(N)$ and $A_n \setminus \emptyset$, then $N(f\chi_{A_n}) \to 0$. If we deny this, there exist $z_n \in F_1^*$ such that $\int_{A_n} |f| \ d|m_{z_n}| > \varepsilon > 0$ for every n, for some ε . By proving that

$$\int_{A_n} |f| \ d \ |m_{z_n}| = \sup \left\{ \left| \int_{A_n} g \ dm_{z_n} \right|, g \text{ is simple, } |g| \le |f| \right\},$$

we may assume: $(*) \mid \int_{A_n} f_n \, dm_{z_n} \mid > \varepsilon, \, n = 1, 2, \cdots$, where the f_n are simple E-valued functions. Form $L^1_{E_0}(\Sigma_0, m)$, where Σ_0 is a separable σ -algebra containing (A_n) such that f and f_n are Σ_0 -measurable; E_0 is the closure of the span of $f(T) \cup \bigcup_{n \geq 1} f_n(T)$. Let $F_0 \subset F$ be the separable Banach space generated by $\{\int h \, dm : h \in L^1_{E_0}(\Sigma_0, m)\}$. By using the Lebesgue dominated convergence theorem in the spaces $L^1_{E_0}(|m_z|)$, we see that $h \in F_{E_0}(N)$

implies $\int h \ dm \in F_0$, whenever h is Σ_0 -measurable. By a diagonal process, assume that (z_n) converges on a countable dense subset of F_0 ; hence (z_n) converges on F_0 . Let $\tau = \Sigma 2^{-n} |m_{z_n}|$, and define $A(\Sigma_0, f)$ to be the space of Σ_0 -measurable functions $h: T \to E_0$ such that $|h| \leq |f|$ a.e. τ ; thus $A(\Sigma_0, f)$ is a complete subset of $L^1_{E_0}(\Sigma_0, \tau)$. Define $T_n: L^1_{E_0}(\Sigma_0, \tau) \to F_0$ by $T_n(h) = \int h \ dm_{z_n}$; note that $||T_n|| \leq 2^n$. It follows that $\lim T_n(h)$ exists for every $h \in A(\Sigma_0, f)$. Using the Baire category theorem, we deduce that (T_n) is equicontinuous at zero on $A(\Sigma_0, f)$. However, since $\int_{A_n} |f_n| \ d\tau \leq \int_{A_n} |f| \ d\tau \to 0$, we have $\lim_n \int_{A_n} f_n \ dm_{z_k} = 0$ uniformly in k. This contradicts (*).

Using the above theorem, we are able to give sufficient conditions for a set to be relatively weakly compact in $L_E^1(m)$.

THEOREM 2. Assume that E is reflexive and F is weakly sequentially complete. Suppose $K \subseteq L_E^1(m)$ is a set satisfying:

- (1) K is bounded;
- (2) $N(f\chi_{A_n}) \rightarrow 0$ uniformly for $f \in K$, whenever $A_n \setminus \emptyset$. Then K is relatively weakly compact.

INDICATION OF THE PROOF. By the Eberlain-Smulian theorem, we may assume that K is a sequence of functions f_n . Let λ be a bounded control measure for m; hence $\lambda(A) \leq N(\chi_A)$, for $A \in \Sigma$, and $N \ll \lambda$ uniformly. We assert that $\lim_{N(A)\to 0} N(f\chi_A)=0$ uniformly for $f\in K$. By hypothesis the set $Q = \{ \int |f| d|m_z| : z \in F_1^* \}$ is uniformly countably additive. Also each measure in Q is absolutely continuous with respect to λ . By [3, Theorem 2.1] $Q \ll \lambda$ uniformly. This implies the above assertion. Since $\lambda \leq N$, we see that K is a bounded subset of $L_E^1(\lambda)$; moreover, $\lim_{\lambda(A)\to 0} \int_A |f| d\lambda = 0$ uniformly for $f \in K$. Hence K is relatively weakly compact in $L_E^1(\lambda)$ [5], [3]. Assume that (f_n) converges weakly to $f_0 \in L^1_E(\lambda)$; we shall show that (f_n) converges weakly to f_0 in $L^1_E(m)$. It can be shown that $L_E^1(m)^*$ consists of E^* -valued measures of finite total variation, absolutely continuous with respect to λ . Let $\sigma \in L^1_E(m)^*$. Using the Phillips theorem, we prove that there exists a $g \in L^1_{E^*}(m)$ such that $\sigma(h) = \int gh \, d\lambda$, for $h \in L_E^1(m)$. The sequence (gf_n) is bounded in $L^1(\lambda)$, since $\|gf_n\|_1 \le \|\sigma\| N(f_n)$; note also that $\lim_{\lambda(A) \to 0} \int_A |gf_n| d\lambda = 0$ uniformly in n. As a result, (gf_n) is relatively weakly compact in $L^1(\lambda)$. Thus we may assume that (gf_n) converges weakly to $h \in L^1(\lambda)$. Let (B_k) be a sequence of sets with union equal to T such that g is bounded on each B_n . For fixed k, $g\chi_C \in L^{\infty}_{E^*}(\lambda) = L^1_E(\lambda)^*$, for every $C \in \Sigma \cap B_K$. Thus $\int_C g f_n d\lambda \rightarrow \int_C g f_0 d\lambda$ and $\int_C f_n g d\lambda \rightarrow \int_C h d\lambda$. Consequently $g f_0 = h$ a.e. λ on B_k , hence $gf_0 = h$ a.e. λ on T. Therefore: $(\#)gf_0 \in L^1(\lambda)$ for every $g \in L^1_E(m)^*$. To show that $f_0 \in L_E^1(m)$ we proceed in two stages. First of all, we define the "associate space" $F_{E,\bullet}(N')$ of $F_{E}(N)$ to be the space of λ -measurable

functions $g: T \to E^*$ such that $gf \in L^1(\lambda)$ for every $h \in L^1_E(m)$. Then we show that when m has the Beppo Levi property (which, by Theorem 1, it does in this instance), then $f_0 \in L^1_E(m)$ if and only if $gf_0 \in L^1(\lambda)$ for every $g \in F_{E^*}(N')$. Then we prove that $F_{E^*}(N') = L^1_E(m)^*$. The lengthy details are omitted. This, in conjunction with (#), implies that $f_0 \in L^1_E(m)$.

COROLLARY 1. Let F be weakly sequentially complete. Suppose $(f_n)_{n\geq 0} \subseteq L^1(m)$. If $\int_A f_n dm \to \int_A f_0 dm$ for every $A \in \Sigma$, then $f_n \to f_0$ weakly in $L^1(m)$.

From the construction in the proof of Theorem 2, we deduce the following corollary.

COROLLARY 2. If E is reflexive and F is weakly sequentially complete, then $L_E^1(m)$ is weakly sequentially complete.

REFERENCES

- 1. R. G. Bartle, *A general bilinear vector integral*, Studia Math. 15 (1956), 337-352. MR 18, 289.
- 2. J. K. Brooks and P. W. Lewis, *Operators on function spaces*, Bull. Amer. Math. Soc. 78 (1972), 697-701. MR 45 #7494.
- 3. J. K. Brooks and N. Dinculeanu, Strong additivity, absolute continuity and compactness in spaces of measures, J. Math. Anal. Appl. 45 (1974), 156-175.
- 4. ——, Lebesgue-type spaces for vector integration. Linear operators, weak completeness and weak compactness, J. Math. Anal. Appl. (to appear).
- 5. S. D. Chatterji, Weak convergence in certain special Banach spaces, MRC Technical Sum. Report #443, University of Wisconsin, Madison, Wis., 1963.
- 6. N. Dinculeanu, *Vector measures*, Internat. Ser. of Monographs in Pure and Appl. Math., vol. 95, Pergamon Press, Oxford, 1967. MR 34 #6011b.
- 7. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BUCHAREST, BUCHAREST, ROMANIA