AN ILL-POSED PROBLEM FOR A STRICTLY HYPERBOLIC EQUATION IN TWO UNKNOWNS NEAR A CORNER¹

BY STANLEY OSHER²

Communicated by Eugene Isaacson, December 4, 1973

In an earlier note [4] we gave a simple example of an ill-posed problem for a system of hyperbolic equations in a region whose boundary has a corner. The system was diagonal with coupling only at the boundary. Earlier we derived necessary and sufficient conditions for well-posedness [2] for a wide class of constant coefficient hyperbolic systems in such regions. In [3] we examined in some detail the phenomena which occur when these conditions are violated. The fundamental work for hyperbolic problems in regions with smooth boundaries was done by Kreiss [1].

It was pointed out by Sarason and Smoller [5] that the work of Strang [6] for the half-space problem implies that the corner problem is well posed for a strictly hyperbolic system in two unknowns iff the corresponding half-space problems are well posed. They constructed, using geometrical optics, a four dependent variable ill-posed example, where the half-space extensions were well posed.

In all the above-mentioned work, the boundary conditions imposed were local, i.e., of the form Bu=f at $x_1=0$, where B is a matrix and u is the unknown vector on the boundary.

We have noticed that much of the theory can be extended to nonlocal pseudo-differential boundary conditions. In particular, conditions of the form

$$B(w_2, \dots, w_n, s)\hat{u}(0, w_2, \dots, w_n, s) = \hat{f}(w_2, \dots, w_n, s),$$

where B is a matrix-valued function of the dual variables $x_i \rightarrow w_i$, $t \rightarrow s$, can be treated. Such boundary conditions are reasonable when nonlinear problems are linearized. We shall discuss this in detail in a future paper.

Our purpose here is to show that for such boundary conditions well-posedness of the two half-space problems does not imply well-posedness of the corner problem, even in the strictly hyperbolic two unknown variable case.

AMS (MOS) subject classifications (1970). Primary 35L50, 35L30; Secondary 78A45. Key words and phrases. Hyperbolic equation, well-posed, initial boundary.

¹ Research supported under N.S.F. grant number GP 29-273.

² Fellow of the Alfred P. Sloan Foundation.

We shall present necessary and sufficient algebraic conditions for well-posedness of this problem in the above-mentioned paper.

We consider the equation

to be solved for the complex-valued functions u and v in the region 0 < x, y, t with initial conditions

(2)
$$u(x, y, 0) = v(x, y, 0) = 0.$$

Next, apply a Laplace transform in t, use the initial conditions (2), and call the dual variable $s = \eta + i\xi$, with n > 0, ξ real. We have

$$s\hat{U} - A\hat{U}_x - B\hat{U}_y = \hat{F},$$

where \hat{U} and \hat{F} are the transformed 2 vectors $\begin{pmatrix} \hat{a} \\ \hat{v} \end{pmatrix}$ and $\begin{pmatrix} \hat{F}_1 \\ \hat{F}_2 \end{pmatrix}$, respectively; A and B are defined in (1).

We impose boundary conditions for $\eta > 1$:

(4)
$$\hat{u}(0, y, s) = -\frac{1 + \sqrt{(1 - c^2)}}{c} \Phi_1(\xi) \hat{v}(0, y, s) + \hat{f}(y, s),$$
(4)
$$\hat{u}(x, 0, s) = -\frac{1 + \sqrt{(1 - c^2)}}{c} \Phi_2(\xi) \hat{v}(x, 0, s) + \hat{g}(x, s),$$

where c is any real number, 0 < c < 1, $\Phi_1(\xi)$, $\Phi_2(\xi)$ are $C_0^{\infty}(-\infty, \infty)$ with $0 \le \Phi_1 \le 1$, $-1 \le \Phi_2 \le 1$, and $\Phi_1(\xi)$, $\Phi_2(\xi) \equiv 1$ if $-\frac{1}{2} < \xi < \frac{1}{2}$, $\Phi_1(\xi) \equiv 0$, $\Phi_2(\xi) \equiv -1$ if $|\xi| > 1$.

The standard estimate for problems of this type is

(5)
$$(\eta - \eta_0) \|\hat{U}\|^2 + \|\hat{U}\|_B^2 \le K(\|\hat{F}\|^2 + \|\hat{f}\|_{B_1}^2 + \|\hat{g}\|_{B_2}^2)$$

uniformly in $s=\eta+i\xi$, for $\eta>\eta_0$, $\eta_0>0$ and fixed.

The norms are defined as

(6)
$$\|\hat{U}\|^{2} = \int_{0}^{\infty} \int_{0}^{\infty} (|\hat{u}(x, y, s)|^{2} + |\hat{v}(x, y, s)|)^{2} dx dy,$$

$$\|\hat{U}\|_{B}^{2} = \int_{0}^{\infty} [|\hat{u}(0, y, s)|^{2} + |\hat{v}(0, y, s)|^{2} + |\hat{u}(y, 0, s)|^{2} + |\hat{v}(y, 0, s)|^{2}] dy.$$

 $\| \ \|_{B_1}$ and $\| \ \|_{B_2}$ are defined analogously.

We have the following

THEOREM. No estimate of type (5) is possible for problem (3), (4)(a), (b). However, problem (3), (4)(a) in the region 0 < x, $-\infty < y < \infty$, and

(3), (4)(b), in the region $-\infty < x < \infty$, 0 < y both obey estimates of type (5), where the norms are modified in an obvious fashion, to be integrals over half- rather than quarter-space.

PROOF. For the quarter-space problem, we consider

(7)
$$\hat{U} = \exp(-csy - sx\sqrt{(1-c^2)}) \begin{bmatrix} 1 \\ -c/(1+\sqrt{(1-c^2)}) \end{bmatrix}$$

for $s = \eta + i\xi$, $0 < \eta$, $-\frac{1}{2} < \xi < \frac{1}{2}$. This function satisfies the homogeneous equations (3), (4)(a), (b). Moreover, the norms on the left side of (5) are finite.

For the right half-plane problem we can easily obtain the estimate

(8)
$$(\eta - \eta_0) \|\hat{U}\|^2 \le K_1 (\|\hat{F}\|^2 + \|\hat{U}\|_B^2)$$

independently of the boundary conditions (4)(a). (See e.g., Osher [2].) We need only to obtain

(9)
$$\|\hat{U}\|_{B}^{2} \leq K_{2}(\|\hat{F}\|^{2} + \|\hat{f}\|_{B_{1}}^{2} + \|\hat{U}\|^{2}).$$

Moreover, in a standard fashion, we can assume $\hat{F} \equiv 0$. (See, e.g., Osher [2].)

We can solve equation (3) for $F \equiv 0$, with boundary conditions (4)(a). Fourier transform (3) in y, then multiply by A^{-1} . We have

$$(10)(a) \tilde{U}_x - A^{-1}(s - Biw)\tilde{U} = 0,$$

where w is the dual variable, $\tilde{U} = \mathscr{F} \hat{U}$,

(b)
$$\tilde{u}(0, w, s) = -\frac{1 + \sqrt{(1 - c^2)}}{c} \Phi_1(\xi) \tilde{v}(0, w, s) + \tilde{f}(w, s).$$

Let

(11)
$$\tilde{U} = T_1(w, s)\tilde{V}.$$

 $T_1(w, s)$ is a unitary matrix-valued measurable function of w, s such that

(12)
$$T_1^*(A^{-1}(s-Biw))T_1 = \begin{pmatrix} -K_+ & m_{12}(w,s) \\ 0 & K_+ \end{pmatrix}$$

where $K_{+} = \sqrt{(s^2 + w^2)}$, Re $K_{+} > 0$.

Thus, the general solution to (10)(a) which does not grow exponentially as $x \rightarrow +\infty$, is

(13)
$$\tilde{V} = \begin{pmatrix} \exp(-K_{+}x) \\ 0 \end{pmatrix} b_{1}(w, s),$$

or

(14)
$$\widetilde{U}(0, w, s) = T_1(w, s) \binom{b_1(w, s)}{0}.$$

Apply the boundary condition (10)(b). Thus

(15)
$$b_1(w,s) = \frac{\tilde{f}(w,s)[|s+K_+|^2+|w|^2]^{1/2}}{\left[(s+K_+) + \frac{1+\sqrt{(1-c^2)}}{c}iw\Phi_1\right]}.$$

It is easy to show that the quantity multiplying $\tilde{f}(w, s)$ is uniformly bounded in w, s, if $\eta > 1$. Thus, this half-space problem is well posed.

We can do the analogous thing for the upper half-plane problem, arriving at

(16)
$$\widetilde{U}(w, 0, s) = T_2(w, s) \binom{b_2(w, s)}{0}.$$

Applying the boundary condition at y=0 leads to

(17)
$$b_2(w,s) = \frac{\tilde{g}(w,s)(|s-iw|+|s+iw|)^{1/2}}{\left[\sqrt{(s-iw)-\frac{1+\sqrt{(1-c^2)}}{c}\sqrt{(s+iw)\Phi_2(\xi)}}\right]},$$

where each square root has positive real part Again we have $|b_2(w, s)| \le K_3 |\tilde{g}(w, s)|$ if $\eta > 1$. Thus the half-space problem is well posed. Q.E.D.

BIBLIOGRAPHY

- 1. H.-O. Kreiss, *Initial boundary value problems for hyperbolic systems*, Comm. Pure Appl. Math. 23 (1970), 277-298.
- 2. S. Osher, Initial boundary value problems for hyperbolic systems in regions with corners. I, Trans. Amer. Math. Soc. 176 (1973), 141-164.
- 3. —, Initial boundary value problems for hyperbolic systems in regions with corners, II, Trans. Amer. Math. Soc. (to appear).
- 4. ——, An ill-posed problem for a hyperbolic equation near a corner, Bull. Amer. Math. Soc. 79 (1973), 143-144.
- 5. L. Sarason and J. Smoller, Geometrical optics and the corner problem, Arch Rational Mech. Anal. (to appear).
- 6. G. Strang, Hyperbolic initial-boundary value problems in two unknowns, J. Differential Equations 6 (1969), 161-171. MR 39 #633.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT STONY BROOK, STONY BROOK, NEW YORK 11790