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1. By an automorphic mapping in Rn we mean a continuous, open, 
discrete, and sense-preserving mapping ƒ from a domain D in Rn into 
Rn=Rn u{oo} which satisfies ƒ o g=f for all g G G for some discrete group 
G of «-dimensional Möbius transformations, n^.2. The results presented 
here indicate differences (see §5) as well as similarities (see §4) between 
automorphic functions in C and automorphic mappings of bounded 
dilatation in Rn, ri>2. By mappings of bounded dilatation we mean 
quasimeromorphic (qm) mappings (cf. [MRV 1-2]). 

2. Let G be a discrete Möbius group acting on the unit ball Bn. For 
x0 e Bn which is not fixed by any element of G\{id} the set P={x e Bn: 
d(x9 x0)<d(x, g(x0)), V g e C/\{id}} is a normal fundamental polyhedron; d 
denotes the hyperbolic distance. If the hyperbolic measure V{Bn\G) of 
BnjG is finite, then every normal fundamental polyhedron P has a finite 
number of (w-l)-faces and a finite number of boundary vertices {ƒ*!,•••, 
pk}=FndBn [S]. The last set is void when Bn\G is compact. P is said to 
be simple if for every boundary vertex/? G PC\dBn all the (w—l)-faces of 
P which meet at p are pairwise G-equivalent. By a recent result of Leon 
Greenberg (unpublished) it can be shown [MS] that if V{Bn\G)< oo, then 
every point b e dBn which is fixed by a parabolic element g e G is a 
boundary vertex of some simple fundamental polyhedron. A Möbius 
transformation is called parabolic if it has a unique fixed point in Rn. 

Complete proofs of the following theorems and related results will 
appear in [MS]. 

3. The existence of automorphic meromorphic functions for Möbius 
groups in C is usually proved by methods which cannot be used in Rn, 
n>2. However, with a suitable modification of a construction by J. W. 
Alexander [A] we obtain 

THEOREM 1. Every discrete Möbius group acting on Bn with V(Bn\G) < oo 
has qm automorphic mappings. 
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We do not know, whether qm automorphic mappings exist for all 
discrete Möbius groups in Bn. 

4. Let G be a discrete Möbius group acting on Bn with F(ÜT/G)<oo, 
P a simple fundamental polyhedron, P a fundamental set for G with 
Papc:p9f:B

n-+Rn an automorphic qm mapping under G and N(f P)= 
sup cardf"x{y) OP over all y e Rn. 

THEOREM 2. Let f G, P, and P be as above. 
(i) If U is any open set in Rn which meets dBn, then Rn\f(UnBn) is of 

zero n-capacity. 
(ii) IfN(f P)< oo, then Rn\fBn is of finite cardinality. 
(iii) If P<^Bn or if lim/(x), as x-+p in P, exists at every boundary 

vertexp e FndBn, then N(f P)< oo and 

2 i(x,f)lN(x,G) = N(fP) 
œef-i(y)nP 

for ally efBn. Here i(x, f) denotes the local topological index of f at x and 
N(x, G)=card{£ e G:g(x)=x}. 

(iv) IfPndBn^ 0 and N(f P)< oo, then the set Q of all parabolic fixed 
points of G is dense in dBn and f has a radial limit at every point b eQ. 

THEOREM 3. Let f G, P, and P be as above and letp e dBn be a boundary 
vertex of P. If N(fP)<oo and \\mf(tp)=a7^co as t-»l, then for all 
sufficiently small r>0 

Axe~*,T ̂  M(r) ^ A2e~p/r. 

Here M(r)=sup\f(x)—a\ over all xeBn with |x— (1—r)p\=r, a and p 
are constants which depend on n, G, N(f P), and the dilatations off and 
Al9 A2 are constants depending on f and G. 

The main tools used in the proofs of Theorems 2 and 3 are two capacity 
inequalities for condensers in Bn\G and general results on open and discrete 
mappings on manifolds. 

5. One of the differences between plane and space qm mappings ƒ is in 
the structure of their branch set Bf (the set of points where ƒ is not a local 
homeomorphism) (cf. [Z], [MRV3, 2.3]). These results combined with 
information on the geometry of Möbius groups give 

THEOREM 4. Let f:Bn->Rn, n>2, be a qm automorphic mapping for a 
Möbius group G acting on Bn with V(Bn\G)< oo. If oo <£ fBn or ifN(f P)< 
oo, then Bf^ 0 ; moreover dBn<^Bf. 

The condition n>2 is essential (the elliptic modular function is a 
counterexample), and so is the condition V(BnlG)<oo. This is shown by 
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an example of a bounded qm local homeomorphism which is automorphic 
under an infinite Möbius group G with F(J9n/G)=oo. 
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