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0. Introduction. In this abstract we state some results concerning 
the approximation numbers and Kolmogoroff diameters of various 
operators between Banach spaces. Let JSf (E9 F) and ^(E9 F) denote the 
bounded linear operators and the closure of the finite rank operators, 
respectively. 

Following Pietsch [8], the wth approximation number aw(T), of a 
T E &(E, F) is defined as follows : 

0Ln(T) = inf{||T - A\\ -.rank A ^ n}; 

the nth Kolmogoroff diameter of a T e 3?(E, F) is defined by 

dn(T) = mf{\\QGT\\:dimG^n}. 

Here the infimum is over all subspaces G<= F and QG denotes the canonical 
quotient map of F-+F/G. 

It is clear that an(T) and dn(T) are monotone decreasing sequences 
and that limn aw(!T)=0 if and only if Tis the limit of finite rank operators 
and limn dn(T)=0 if and only if T is compact. 

For a brief discussion of the algebraic and analytic properties of an 

and dn (and other characteristics of bounded linear operators) see [7]. 
For compact operators on Hilbert space <x.n(T)=dn(T) and this charac
teristic has been extensively studied in the book of Gohberg and Kreïn 
[1]. For arbitrary Banach spaces the results are few. Some very interesting 
results can be found in the papers [5] and [6] ; related results are also to 
be found in the classic memoir of Grothendieck, second part [2]. 
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Except where noted all our notation is standard. Details of the following 
results will appear elsewhere. 

1. General relationships between ocn and dn. 

1.1. THEOREM. For any T e<2?{E, F) the following inequality is valid: 

dn(T) <: *n(T) ^ O + l)dn(T), for each n. 

The best value, p(n), for which <xn(T)^p(n)dn(T) is not known. In 
general, p(n) cannot be replaced by a constant K. 

If the domain space is nice enough, however, <xw and dn always co
incide. More precisely, 

1.2. THEOREM. If E is an L^)-space then for any TeJ?(E,F), 
F arbitrary, cx.n(T)=dn(T) for each n. In particular, if E is a Banach space 
and q a norm one surjection of L^fx) onto E, then for any TeJ?(E, F), 
dn(T)=0Ln(Tq) for each n. 

2. Diagonal operators on the /^-spaces. An operator T of the form 
Ten=Xnen where (en) denotes the unit vectors in any /^-space is called a 
diagonal operator and we say that T corresponds to (AJ. 

2.1. THEOREM. Suppose (Aw) is an increasing sequence with limit A. 
Then 

(1) if T7:/!->/«, corresponds to (AJ, dn(T)=0Ln(T)=^2 for all n; and, 
ifT'.l^CQ then dn(T)=Kn(T)=Àfor all n; 

(2) ifT\l^l^p>\, oin(T)=Àfor alln anddn(T)=Xj21^for alln; 
(3) if\<zp<^q< oo and T:lp-+lQ then dn(T)=Kn(T)=Afor all n. 

If one considers the natural injection I of I^CQ, (1) above shows that 
aw(/)5^aw(/*) and (2) above shows that, in general, (x.n(T)^dn(T). 

2.2. THEOREM. Suppose (Aw) is a decreasing sequence. 
(4) Ifl^q<p<oo and T:lp-+lq corresponds to (An) then 

\ n + l / 
where l / r+ l / / ?= l /# ; 

(5) Ifl<^p<q<oo then 

( I V H s M n S m i n d , ^ , ) , 1 + i - i . 

We mention that (4) above for p?£ oo has been computed by P. Johnson 
[3] and asymptotic estimates for/? =00 have been given by Pietsch [8]. 
We are unable to compute ocn(T) exactly in case (5). However, there are 
operators T, S : ^ - ^ corresponding to decreasing sequences (AJ and 
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(fin) respectively such that oin(T)=(^+1 À"1)'1 and aw(S)=j8w/2 for each w. 
Thus (5) gives the best asymptotic values of an possible. 

For the remaining case, we remark that it is well known (see, e.g., 
[7]) that for T: lv-+h corresponding to a decreasing sequence (Àn), dn(T)= 
oin(T)=Àn+1 for each n. 

3. //-operators and ^-finite bases. An operator T acting on a Banach 
space E is an //-operator if its spectrum is real and its resolvent p(T) 
satisfies 

|| ( r - A/)-1!! ^ CI/„Ah1 (ImX * 0), C independent of p[T). 

An operator on a Hubert space is an //-operator with constant C = l if 
and only if it is a selfadjoint operator. Markus [5] has proved that for a 
compact //-operator T with eigenvalues (Aw) (numbered in order of 
decreasing modulus and taking into account their multiplicity), the 
sequences (dn(T)), (an(r)) and (An) are equivalent, i.e., there are constants 
A, B such that dn(T)<:Kn(T)^A\Xn+1\^Bdn(n 

We generalize this result to certain types of diagonal maps. We say that 
a (Schauder) basis (xn) for a Banach space E is e ̂ finite provided ep(xn)= 

suPm=1(2^i\f(xn)n^<+œ. 
3.1. THEOREM. Let T be a diagonal basis mapping en->Xnun where 

(en9fn) and (un, gn) are Schauder bases for E and F respectively and (Àn) 
is a monotonically decreasing null sequence, Xn9^0. Suppose that 
ei(gn®

en) and ei(fn®un) are finite. Then 

l*l(gn ® en)]-nn+1 <: dn(T) <: *n(T) <: M / n ® ^ V i 

lli any infinite dimensional Banach space there are basic sequences 
satisfying the hypotheses of 3.1. 

Motivated by this result and a classical result of S. Bernstein, we say 
that two Banach spaces E and F form a Bernstein pair if for any positive 
monotonie null sequence (bn) there is a TeJ?(E,F) such that (oLn(T)) 
is equivalent to (bn). 

3.2. THEOREM. Let E and F be arbitrary infinite dimensional Banach 
spaces. Then there are infinite dimensional spaces E0 and F0 in E and F 
respectively such that (E0, F0) is a Bernstein pair. Moreover, the operator T 
satisfying the definition for {E0, E0) can be chosen to be a compact H-
operator. 

3.3. PROPOSITION. If E—E^E2 and F=F1^F2 and (Ei9 F{) is a Bern
stein pair for / = 1 or 2, then (E, F) is a Bernstein pair. 
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As we have observed, in general, otn(T)^xn(T*). Thus the next result 
is somewhat surprising. 

3.4. THEOREM. Suppose Te^(E, F). Then an(T)=:oLn(T*)for each n. 

Recall that an operator is of type lv [8] if (onn(T)) e lp. 

3.5. COROLLARY. An operator T is of type lv if and only if JT* is of 
type l9. 

Another immediate corollary to 3.4 is the following fact concerning 
Bernstein pairs. 

3.6. COROLLARY. If (£, F) is a Bernstein pair, so is (F\ E'). 

Also from 3.4 we obtain for operators in ^(E, F) the dual result of 
1.2. 

3.7. COROLLARY. Let i be an embedding of a Banach space F into 
l„(T). Then ifTe^(E, F) we have xn(iT)=dn(T)for all n. 

Perhaps all couplings of Banach spaces form Bernstein pairs. Indeed, 
all the classical Banach spaces form Bernstein pairs. 

More precisely, let E and F be -Sf̂ - and J5fô-spaces in the sense of 
Lindenstrauss and Pelczyiiski [4]. Then (E, F) is a Bernstein pair. 

Finally, we introduce the notion of a weak Bernstein pair. Two Banach 
spaces E and F form a weak Bernstein pair if there is a decreasing sequence 
(bn)ec0\l2 and Te^(E,F) such that (<x.n(T)) is equivalent to (bn). 
Clearly a Bernstein pair is a weak Bernstein pair. 

3.8. THEOREM. Any of the following is sufficient in order that Banach 
spaces E and F form a weak Bernstein pair. 

(1) E contains an unconditional basic sequence; 
(2) E and F have the approximation property ; 
(3) E and F admit equivalent uniformly convex norms. 

The importance of the notion of a weak Bernstein pair is shown by the 
following corollary which partially answers an unsolved problem of 
Grothendieck and Rosenthal. 

3.9. COROLLARY. If (E, E) forms a weak Bernstein pair then on E 
there îs a compact nonnuclear operator. 

ADDED IN REMARKS. Since submitting this abstract we have received 
a preprint from Professor A. Pietsch entitled s-numbers of bounded linear 
operators. In this paper, he develops an axiomatic theory of s-numbers: 
the OLU and dn above are special cases of this concept. Professor Pietsch 
proves many interesting results disjoint from our paper and also observes 
our Theorems 1.1 and 1.2 and the result of P. Johnson, 2.2(4). 
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