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D. Epstein has shown [1] that for quite general groups of homeo-
morphisms, the commutator subgroup is simple. In particular, let M 
be a manifold. (In this note, we assume all manifolds are finite dimen­
sional, Hausdorff, class C00, and have a countable basis for their topology.) 
By a C r + mapping (resp. diffeomorphism) we mean a Cr mapping (resp. 
diffeomorphism) whose rth derivative is Lipschitz. Let Diff(M, r) (resp. 
Diff(M, r+)) denote the group of Cr (resp. Cr+) diffeomorphisms h of 
M such that there is an isotropy Ht of h to the identity, and a compact 
set K such that Ht(x)=x if x e M—K. Epstein showed in [1] that the 
commutator subgroup of Diff(M, r) (resp. Diff(M, r+)) is simple. 
Thurston announced in [4] that Diff(Af, oo) is simple. Let n=dim M. 
In this note we announce the following two results. 

THEOREM 1. If oo^r^.n + 1, then Diff(M, r+) is simple. 

THEOREM 2. If ao^.r'^.n+.l, then FTr^ is (n + l)-connected. 

Here FY** denotes Haefliger's classifying space for codimension n 
foliations of class C r+. These two theorems are closely related by results 
of Thurston (cf. [2], [4]). The case r = oo of these theorems is due to 
Thurston [4]. 

Here we outline a proof of Theorem 1. By Epstein's theorem, it is 
enough to show Diff(M, r + ) is equal to its own commutator subgroup. 
A well-known argument shows that it is enough to prove the latter in 
the case M=Rn. Let A>1. Let D0={x eRn: - 2 ^ x ^ 2 , l < y ^ / i } . For 
l<;/<;>7, let 

Di = {xe Rn. - 2 ^ Xj <; 2, 1 <Zj < U -2A ^ *, < 2A, i^j^ n). 

Let a e Diff(/T, oo) be such that <x(x)=Ax if x e D0. Let p be a C00 

real valued function on Rn, with compact support, such that O ^ p ^ l , 
and p = l on D±. Let T,=exp(/>a/a^). Then T, G Diff(jRn, oo), l^i^n. 
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LEMMA. There exists A0 such that the following holds. Let A^.A0. Let f 
be a Cr+ diffeomorphism of Rn

9 with support in D09 and sufficiently close 
to the identity (with respect to the Cr+ topology). Suppose o o > r ^ « + l . 
Then there exist g09 gl9 • • • , gn9 Xl9 • • • , Xn e Diff(i?n, r+) such that 

(1) v/gn*"1 = £o> 

(2i) tigi-iTi^1 = giTi9 1 ^ i «S n. 

PROOF THAT THE LEMMA IMPLIES THEOREM 1. It is enough to show that 
any diffeomorphism such as ƒ is a product of commutators, since any 
element of Diff(Rn, r+) is a product of conjugates of such diffeomor-
phisms. Now if u e Diff(2£n, r + ) , let [u] denote its image in the commu­
tator quotient group. From (1), we get [/][gJ==[goL a n d from (2^, we 
get [gi-ii-lgil l£i<n. Hence [/] = 1. Q.E.D. 

OUTLINE OF THE PROOF OF THE LEMMA IN THE CASE r< oo. Let Bô 

denote the subset of Diff(Rn
9 r+) consisting of g with support in D0 

such that 
sup H/>•£(*) - D'g(y)\\l\\x -y\\<d. 
x^y 

For d > 0 sufficiently small, and ƒ sufficiently near the identity, there 
exists a mapping <&.BÔ->BÔ such that if g G Bô and gn=®(g), then there 
exist gl9 • • • , gn9 Xl9 • • • , Xn G Diff(Rn, r+) such that 

(3) ofgvr1 = g0, 

(4i) Aigi-iTiXi1 = gi-ri9 l^i^n. 

The mapping O is continuous with respect to the Cr topology. Since 
Bô is compact with respect to the Cr topology, and convex, it follows 
from the Schauder-TychonofF fixed point theorem that O has a fixed 
point. But such a fixed point provides a solution of the equations (1), 
(2i). 

We can only sketch the idea of the construction of O. If u:Rn~>Rn 

vanishes outside a compact set, we define 

\\u\\r+ = sup \\Dru(x) - D'u(y)\\l\\x - y\\. 
x+y 

Then it is easy to see that if g0 is defined by (3), we have 

| | fo - id |U<^- ' | | / f - id | | f + . 
Then we construct gl9 • • • , gn inductively. Supposing g^ has been 
defined, has support in Di9 and is near the identity, we construct gt to 
have support in Di+l9 to be near the identity and to satisfy 

\\gi - idlU < CA \\g^ - idlU. 
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Here, C is a constant independent of A. By taking A sufficiently large, 
and ƒ sufficiently near the identity in relation to ô, we have that O maps 
B& into itself, where we define <£>(g)=gn. 
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