AN IMPLICIT FUNCTION THEOREM FOR SMALL DIVISOR PROBLEMS

BY E. ZEHNDER¹

Communicated by S. S. Chern, June 18, 1973

- 1. Introduction. Various nonlinear problems, not accessible standard existence theorems, led to new techniques which allowed the solution of the isometric embedding problem (J. Nash [1]) and stability problems of Hamiltonian systems connected with small divisors (A. N. Kolmogorov, V. I. Arnold, J. Moser [2]-[6]). Subsequently, the underlying ideas were abstracted as implicit function theorems [7]-[10], which however do not cover most small divisor problems. It is the aim of this paper to formulate and prove a simple implicit function theorem also covering many of these problems. The underlying idea is due to H. Rüssmann [11]. Its basic idea is a modification of Newton's method in the framework of linear spaces and not in that of the group of coordinate transformations as it was used in [2]-[6], [14]. The proof of this theorem is elementary; the real difficulty, however, lies in showing that the assumptions can be met in the relevant applications. We mention as a new application the perturbation theory of invariant tori of dimension $m \le n$ of globally Hamiltonian diffeomorphisms defined on a 2n-dimensional symplectic manifold, in which we were able to verify those assumptions. The proof will be published elsewhere. I am indebted to J. Moser for acquainting me with small divisor problems.
- 2. Implicit function theorem. The following set up is prompted by H. Jacobowitz [9] and L. Nirenberg [10]. We consider three one-parameter families of Banach spaces X_{σ} , Y_{σ} , Z_{σ} in the closed unit interval: for $0 \le \sigma' \le \sigma \le 1$,

$$(1) X_0 \supseteq X_{\sigma'} \supseteq X_{\sigma} \supseteq X_1$$

(and analogous for Y_{σ} and Z_{σ}) and with norms $| \ |_{\sigma}$ in X_{σ} , $\| \ \|_{\sigma}$ in Y_{σ} and $| \ |_{\sigma}$ in Z_{σ} satisfying

(2)
$$|f|_{\sigma'} \leq |f|_{\sigma}, \quad |u|_{\sigma'} \leq |u|_{\sigma}, \quad |z|_{\sigma'} \leq |z|_{\sigma}$$

AMS (MOS) subject classifications (1970). Primary 35A35, 58C15, 70F15, 70H20.

¹ Research sponsored under AFOSR Grant 70-1866C.

for $f \in X_{\sigma}$, $u \in Y_{\sigma}$, $z \in Z_{\sigma}$ and $0 \le \sigma' \le \sigma$. In Y_{σ} we have a second norm $\| \|_{\sigma}$ such that $\| u \|_{\sigma} \le \| u \|_{\sigma}$ and $\| u \|_{\sigma'} \le \| u \|_{\sigma}$ for $u \in Y_{\sigma}$ and $\sigma' \le \sigma$. For fixed N > 0 and $1 \ge R > 0$ we define the open balls

$$N_{\sigma} = \{ f \in X_{\sigma} \ \big| \ |f|_{\sigma} < N \} \subset X_{\sigma}, \qquad R_{\sigma} = \{ u \in Y_{\sigma} \ \big| \ \|u\|_{\sigma} < R \} \subset Y_{\sigma}$$
 and

$$\hat{R}_{\sigma} = \{ u \in Y_{\sigma} \mid ||u||_{\sigma} < R \} \subset Y_{\sigma}.$$

Let $F(\cdot, \cdot)$ be a mapping into Z_0 which is defined for every $(f, u) \in X_{\sigma} \times Y_{\sigma}$ belonging to $N_{\sigma} \times R_{\sigma}$ for some $\sigma > 0$, and which is continuous as a mapping from $N_{\sigma} \times R_{\sigma}$ into $Z_{\sigma'}$ for every $0 \le \sigma' \le \sigma$. The aim is to solve for a given f in some N_{σ} , F(f, u) = 0, u in some $Y_{\sigma'}$, $\sigma' < \sigma$, assuming that $|F(f, u_0)|_{\sigma}$ is sufficiently small. We make the following hypothesis in which $\alpha, \beta, \gamma, K_1, K_2, K_3 > 0$ are fixed.

(i) Taylor formula. For every σ in $0 < \sigma \le 1$ and every $f \in N_{\sigma}$ the mapping $F(f, \cdot)$ from $R_{\sigma} \subset Y_{\sigma}$ into $Z_{\sigma'}$, $\sigma' < \sigma$, has a Fréchet derivative dF(f, u) at every $u \in \hat{R}_{\sigma}$, and for $u, v \in \hat{R}_{\sigma}$, Q(f; u, v) = F(f, u) - F(f, v) - dF(f, u)(u-v), satisfies:

$$|Q(f; u, v)|_{\sigma'} \leq (K_1/(\sigma - \sigma')^{\alpha}) \|u - v\|_{\sigma'}^2$$

(ii) Approximative right inverse of dF(f, u). For every σ in $0 < \sigma \le 1$ and every $(f, u) \in N_{\sigma} \times \hat{R}_{\sigma}$ there is a linear map $\eta(f, u)(\cdot) \in L(Z_{\sigma}, Y_{\sigma'})$ for every $\sigma' < \sigma$, such that for all $a \in Z_{\sigma}$

$$(4) \qquad |(dF(f,u)\circ\eta(f,u)-\mathbf{1})(a)|_{\sigma'} \leq \frac{K_2}{(\sigma-\sigma')^{\alpha+\gamma}}|F(f,u)|_{\sigma}\cdot|a|_{\sigma}$$

and

(5)
$$||\eta(f, u)(a)||_{\sigma'} \leq (K_3/(\sigma - \sigma')^{\gamma}) |a|_{\sigma},$$

(6)
$$\|\eta(f,u)(a)\|_{\sigma'} \leq (K_3/(\sigma-\sigma')^{\gamma+\beta}) |a|_{\sigma}.$$

THEOREM 1. Under the above conditions (i), (ii) there exist two constants C_1 and C_2 depending on α , β , γ , K_1 , K_2 and K_3 such that if $(f, u_0) \in N_\sigma \times \hat{R}_\sigma$ with $\|u_0\|_\sigma \le r < R$ for some σ in $0 < \sigma \le 1$ satisfies $|F(f, u_0)|_\sigma \le C_1 \cdot (R-r) \cdot \sigma^q$, $q \ge 2\gamma + \alpha + \beta$, then there exists a $u_f \in Y_{\sigma/2}$ with $F(f, u_f) = 0$. Further u_f satisfies

(7)
$$||u_f - u_0||_{\sigma/2} \le C_2 \cdot |(Ff, u_0)|_{\sigma} \cdot \sigma^{-\gamma}$$

and

(8)
$$||u_f - u_0||_{\sigma/2} \le (R - r)\sigma^{q - \gamma - \beta}.$$

PROOF. We use Newton's method but replace the inverse of dF(f, u) (which need not exist) with the approximate right inverse $\eta(f, u)$ to define

a sequence (u_n) , $n \in \mathbb{Z}_0^+$ which (as we prove) converges to a solution of F(f, u) = 0. Let $K = \max\{1, K_i\}$, $1 \le i \le 3$, $\lambda = 4$, $\mu = \lambda/2$, $\kappa = \frac{3}{2}$, $s = q^{-1}$ and $\exp(-\xi) = K^{-3} \cdot 2^{-3(q+1)}$. Set

$$\sigma_n = \sigma/2 \cdot (1 + \exp(-\xi s \kappa^n)), \qquad \tau_{n+1} = \frac{1}{2}(\sigma_{n+1} + \sigma_n)$$
for $n = 0, 1, 2, \cdots$

We then have $\sigma_{n+1} < \tau_{n+1} < \sigma_n$ and $\lim \sigma_n = \sigma/2$ as $n \to \infty$. We define inductively the sequence (u_n) by u_0 and

(9)
$$u_{n+1} = u_n + v_n, \quad v_n = -\eta(f, u_n)(F(f, u_n)), \quad n \ge 0.$$

To simplify the notation we omit the f's in the following. Using induction we prove the statements S_n :

(n1)
$$u_n \in Y_{\sigma_n}, \quad |F(u_n)|_{\sigma_n} \le \nu(R-r) \cdot \sigma^q \cdot \exp(-\xi \lambda \kappa^n),$$

$$(n2) v_n \in Y_{\tau_{n+1}}, \|v_n\|_{\tau_{n+1}} \leq \nu(R-r) \cdot \sigma^{q-\gamma} \exp(-\xi \mu \kappa^n),$$

(n3)
$$||v_n||_{\tau_{n+1}} \leq \nu(R-r) \cdot \sigma^{q-\gamma-\beta} \exp(-\xi \mu \kappa^n),$$

$$(n4) \quad u_{n+1} \in \hat{R}_{\tau_{n+1}}, \qquad \|u_{n+1} - u_0\|_{\tau_{n+1}} \le (R - r)[1 - \exp(-\xi \mu/2\kappa^n)],$$

with $0 < \nu \le 1$ to be determined later on. S_0 is valid if $|F(f, u_0)|_{\sigma} \le \nu \cdot C_1 \cdot (R-r) \cdot \sigma^q$ with $C_1 = \exp(-2\lambda \xi)$. Assuming the validity of S_i , $i=1, 2, \dots, n$, we prove S_{n+1} . Since $u_{n+1}, u_n \in \hat{R}_{r_{n+1}} \subset \hat{R}_{s_{n+1}}$, it follows for

$$F(u_{n+1}) = -(dF(u_n) \circ \eta(u_n) - 1)(F(u_n)) + Q(u_{n+1}, u_n)$$

using (i) and (ii):

$$\begin{split} |F(u_{n+1})|_{\sigma_{n+1}} & \leq \frac{K_2}{(\sigma_n - \sigma_{n+1})^{\alpha + \gamma}} |F(u_n)|_{\sigma_n}^2 + \frac{K_1}{(\tau_{n+1} - \sigma_{n+1})^{\alpha}} |\eta(u_n)(F(u_n))|_{\tau_{n+1}}^2 \\ & \leq \left\{ \frac{K_2}{(\sigma_n - \sigma_{n+1})^{\alpha + \gamma}} + \frac{K_1 K_3^2}{(\tau_{n+1} - \sigma_{n+1})^2 (\sigma_n - \tau_{n+1})^{2\gamma}} \right\} |F(u_n)|_{\sigma_n}^2. \end{split}$$

From this estimate (n+1)1 follows immediately. Using then (9) and (4), (5), (6) one easily verifies (n+1)(2-4). From (n1) we now conclude that $F(f, u_n) \rightarrow 0$ in $Z_{\sigma/2}$ as $n \rightarrow \infty$. Since $u_{n+1} - u_n = v_n$, it follows from (n2) that (u_n) is a Cauchy sequence in $Y_{\sigma/2}$. Calling $\lim u_n = u$ we conclude from the continuity of F, that F(f, u) = 0. From (n3) we get for all n

$$\begin{split} \|u_n - u_0\|_{\sigma/2} & \leq \sum_{n=0}^{\infty} \|v_n\|_{\sigma/2} \\ & \leq 2\sigma^{q-\gamma-\beta}(R-r) \mathrm{exp}(-\xi\mu[\kappa-1]) < (R-r)\sigma^{q-\gamma-\beta} \end{split}$$

and hence (8). Similarly one gets (7); given (f, u_0) such that

$$0 < |F(f, u_0)|_{\sigma} \le C_1 \cdot (R - r)\sigma^{\alpha}$$

one chooses ν such that $|F(f, u_0)|_{\sigma} = \nu \cdot C_1 \cdot (R - r)\sigma^q$. \square

The new idea consists of introducing an approximate right inverse $\eta(f, u)$, see (4), which is an exact right inverse at the solutions of F(f, u) = 0! For many small divisor problems such an approximate right inverse can be provided if one is dealing with a conjugation problem.

REMARK (SEE [15]). Various modifications of Theorem 1 are possible. Under additional conditions for F and η the above solution $f \rightarrow u_f$ of $F(f, u_f) = 0$ is Fréchet differentiable even though the problem may not have a unique solution. Uniqueness of the solutions u_f follows from the existence of an approximative left inverse. A similar theorem holds in the framework of spaces of differentiable functions using smoothing operators.

3. An application. For motivation and background consult J. Moser [12] and S. Graff [13]. We consider on the manifold $M = T^n \times R^n \times R^m \times R^m$ the real analytic mapping

$$\varphi_0:(x,y,\xi,\eta)\to(x+\omega+y,y,\Lambda^+(x)\xi,\Lambda^-(x)\eta),$$

where $\Lambda^{\pm}(x) \in L^{-1}(\mathbf{R}^m)$ with $\sup_{x \in T^n} (\|\Lambda^{+}(x)^{-1}\|, \|\Lambda^{-}(x)\|) \leq a < 1$, and where $\omega = (\omega_1, \dots, \omega_n)$ satisfies

(10)
$$|(\omega, k) - l| \ge \gamma |k|^{-\beta},$$

for all integers (k, l), $k = (k_1, \dots, k_n) \neq 0$, $0 < \gamma < \frac{1}{2}$, $\beta > n$. The question is, when does the invariant torus $T_0 = T^n \times (\zeta = 0)$, $\zeta = (y, \xi, \eta)$ survive under a perturbation by a real analytic mapping f defined in an open neighborhood of T_0 . With (φ_{λ}) we denote the family of mappings

$$\varphi_{\lambda} \colon (x, y, \, \xi, \, \eta) \to (x + \omega + y, \, y, \, (\Lambda^+(x) + \lambda^+(x))\xi, \, (\Lambda^-(x) + \lambda^-(x))\eta),$$

where λ stands for the pair (λ^+, λ^-) . For a given mapping $f = (f_i)$, $1 \le i \le 4$, on M and $\mu = (\mu_0, \mu_1) \in \mathbb{R}^n \times L(\mathbb{R}^n)$ we define $f_{\mu} = (f_1, f_2 + \mu_0 + \mu_1 y, f_3, f_4)$. With

$$\Omega_{\sigma\rho} = \Omega_{\sigma} \times \Omega_{\rho} = \{x \mid |\text{Im } x| < \sigma\} \times \{|\zeta| < \rho\}$$

we denote complex neighborhoods of the torus T_0 .

Theorem 2. Given φ_0 as above, then for every $\varepsilon > 0$ there exists a $\delta > 0$, $\delta(\varepsilon, \Omega_{\sigma\rho}, \varphi_0)$, such that for every real analytic mapping f with $|f - \varphi_0|_{\Omega_{\sigma\rho}} < \delta$ there exist two real analytic mappings φ_{λ} and $\psi: \Omega_{\sigma/2\rho} \to \Omega_{\sigma\rho}$, $\psi = \mathrm{id} + w$, with $w(x, \zeta) = \alpha(x) + (\beta(x), \zeta)$, and there exist constants $\mu \in (\mathbf{R}^n, L(\mathbf{R}^n))$ such that

(i)
$$\max\{|\mu|, |\alpha|_{\Omega_{\sigma/2}}, |\beta|_{\Omega_{\sigma/2}}, |\lambda^{\pm}|_{\Omega_{\sigma/2}}\} < \varepsilon$$

and

(ii)
$$T\psi \circ T\varphi_{\lambda}|_{T_{0}} = Tf_{\mu} \circ T\psi|_{T_{0}},$$

where T_0 denotes the complex torus $\Omega_{\sigma/2} \times \{0\}$ and T the tangent functor.

We look at the mappings $f_{\mu} \circ (\mathrm{id} + w) - (\mathrm{id} + w) \circ \varphi_{\lambda} = \phi(f, u)$ on $\Omega_{\sigma\rho}$, where (according to the notation in Theorem 2) $u = (\mu, \lambda, \alpha, \beta)$ is an element of the Banach space Y_{σ} of vector- and matrix-valued real analytic functions defined on the complex torus Ω_{σ} . One then proves that the functional F, defined by $F(f, u) = (\phi(f, u)|_{\zeta=0}, d(\phi(f, u))|_{\zeta=0})$, d the Jacobian, satisfies the assumption of Theorem 1. If f and φ_0 are globally Hamiltonian mappings (i.e. $f * \theta - \theta = ds$, with $\theta = \sum_{i=1}^n y_i dx_i + \sum_{j=1}^m \eta_j d\xi_j$ and s a function defined on an open neighborhood of T_0) then one can show that $\mu=0$ in Theorem 2.

COROLLARY. Let f and φ_0 be real analytic globally Hamiltonian mappings such that $|f-\varphi_0|_{\Omega_{\sigma\rho}}$ is sufficiently small, then there exist two mappings ψ and $\varphi_\lambda\colon \Omega_{\sigma/2\rho} \to \Omega_{\sigma\rho}$ such that

$$T\psi \circ T\varphi_{\lambda}|_{T_0} = Tf \circ T\psi|_{T_0},$$

T and T_0 as in Theorem 2. Moreover the local stable and unstable manifolds of the (under f) invariant torus $\psi(T_0)$ are real analytic and Lagrangian.

Using the methods of J. Moser [6], [9] we get a perturbation theory for hyperbolic tori in the differentiable case. The proofs will appear elsewhere.

REFERENCES

- 1. J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63. MR 17, 782.
- 2. A. N. Kolmogorov, Théorie générale des systèmes dynamiques et mécanique classique, Proc. Internat. Congress Math. Amsterdam, vol. I, North-Holland, Amsterdam, 1957, pp. 315-333. MR 20 #4066.
- 3. V. I. Arnol'd, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91-192=Russian Math. Surveys 18 (1963), no. 6, 85-191. MR 30 #943.
- 4. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962, 1-20. MR 26 #5255.
- 5. ——, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824–1831. MR 24 #A2695.
- **6.** ——, A rapidly convergent iteration method and non-linear partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) **20** (1966), I: pp. 265–315, II: pp. 499–535. MR **33** #7667; **34** #6280.
- 7. J. T. Schwartz, *Nonlinear functional analysis*, Lecture notes, 1964, Gordon and Breach, New York, 1969, pp. 33-44.
- 8. F. Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. École Norm. Sup., 4º série, 5 (1972), 599-660.

- 9. H. Jacobowitz, Implicit function theorems and isometric embeddings, Ann. of Math. (2) 95 (1972), 191–225.
- 10. L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry 6 (1972), 561-576.
- 11. H. Rüssmann, Kleine Nenner. II: Bemerkungen zur Newtonschen Methode, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. (1972), 1-10.
- 12. J. Moser, Stable and random motions in dynamical systems with special emphasis on celestial mechanics, Princeton Univ. Press, Princeton, N.J., 1973.
- 13. S. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, Dissertation, New York University, New York, June, 1971.
 - 14. S. Sternberg, Celestial mechanics, Part II, Benjamin, New York, 1969.
- 15. E. Zehnder, The Moser-Nash implicit function theorem for small divisor problems (to appear).

School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540