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1. Introduction. Various nonlinear problems, not accessible to 
standard existence theorems, led to new techniques which allowed the 
solution of the isometric embedding problem (J. Nash [1]) and stability 
problems of Hamiltonian systems connected with small divisors (A. N. 
Kolmogorov, V. I. Arnold, J. Moser [2]-[6]). Subsequently, the under­
lying ideas were abstracted as implicit function theorems [7]-[10], which 
however do not cover most small divisor problems. It is the aim of this 
paper to formulate and prove a simple implicit function theorem also 
covering many of these problems. The underlying idea is due to H. 
Rüssmann [11]. Its basic idea is a modification of Newton's method in 
the framework of linear spaces and not in that of the group of coordinate 
transformations as it was used in [2]-[6], [14]. The proof of this theorem 
is elementary; the real difficulty, however, lies in showing that the 
assumptions can be met in the relevant applications. We mention as a 
new application the perturbation theory of invariant tori of dimension 
m^n of globally Hamiltonian diffeomorphisms defined on a 2#-dimen-
sional symplectic manifold, in which we were able to verify those assump­
tions. The proof will be published elsewhere. I am indebted to J. Moser 
for acquainting me with small divisor problems. 

2. Implicit function theorem. The following set up is prompted by H. 
Jacobowitz [9] and L. Nirenberg [10]. We consider three one-parameter 
families of Banach spaces Xa9 Ya9 Za in the closed unit interval: for 
O^ t f ' ^c r^ l , 

(1) Xo 2 *o> ^Xa^Xx 

(and analogous for Ya and Za) and with norms | \a in Xa, \ \a in Ya and 
| | a in Za satisfying 

(2) I ƒ |,< ^ \f U \u\9. ^ \u\a, \z\9. ^ \z\9 
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for ƒ e Xa, ue y „ z eZa and O^or'^cr. In Ya we have a second norm 
|| ||ff such that lwl,<; ||w||, and \\u\\a,<: \\u\\a for ueYa and a'^a. For fixed 
N>0 and lg : i?>0 we define the open balls 

iV, = {ƒ e X. | l / l , < N} c= X„ tf, = {i* G Y, I lul , < R} c y, 

and 

£ , = { u e y , | | | u L < K } c yff. 

Let iF(- , •) be a mapping into Z0 which is defined for every (ƒ, u) G 
X , x yff belonging to NaxRa for some o*>0, and which is continuous as 
a mapping from NaxRff into Z,/ for every O^c/^o*. The aim is to solve 
for a given ƒ in some Na9 F(f w)=0, u in some y,>, c r ^ c , assuming that 
|F(/ , Wo)!, is sufficiently small. We make the following hypothesis in which 
a, j8, y, Kl9 K2, JKT3>0 are fixed. 

(i) Taylor formula. For every a in 0 < c r ^ l and every feNa the 
mapping F(f •) from JR, c y , into Z,,, o'<o, has a Fréchet derivative 
dF(f u) at every w G $ , , and for w, v G $ , , g ( / ; w, v)=F(f u)—F(f v)— 
dF(f u)(u—v), satisfies: 

(3) |Q(/; ii, t»|., £ (^/(cr - cr')*) |w - v\l 

(ii) Approximative right inverse ofdF(f u). For every a in 0 < c r ^ l and 
every (f9u)eNaxRa there is a linear map rj(fu)(') e L(Za9 Ya) for 
every a'<o, such that for all aeZa 

(4) |(dFtf «) o V(f, u) - l){a)\a. ^ K\ \F(f, u)l • \a\. 
(<r — a ' ) l y 

and 

(5) Hf, «X«)l„< £ (Ksl(a - aj) \a\„, 

(6) Hf, u)(a)\\„, £ (K3l(a - or')y+") N„. 

THEOREM 1. Under the above conditions (i), (ii) there exist two constants 
Q and C2 depending on a, /?, y, Kl9 K2 and K3 such that if(f u0) e Na X Ra 

with | |w0Ltk r<R for some a in 0 < c r ^ l satisfies \F(f w0)|,^Ci • (R—r) • 
aq, q^.2y + cc+P, then there exists a ufe Ya/2 with F(f W/)=0. Further uf 

satisfies 

(7) \uf-u0\o/2^C2-\(Ff9u0)l-o-? 

and 

(8) |K - u0IU £(R- r)a«-»-'. 

PROOF. We use Newton's method but replace the inverse of dF(f u) 
(which need not exist) with the approximate right inverse rj(f u) to define 
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a sequence (un), ne Z^ which (as we prove) converges to a solution of 
F(f9u)=0. Let K=max{l9Kt}9 l ^ / ^ 3 , A=4, ^=A/2, K = | , «yrzgr1 and 
exp(- | )=A:- 3 -2- 3^+ 1 ) . Set 

an = (7/2 • (1 + exp(~^Acn)), rw+1 = i(an+1 + an) 

for n = 0, 1, 2, • • • . 

We then have an+1<Tn+1<an and lim<rw=cr/2 as n->co. We define 
inductively the sequence (un) by w0 and 

(9) ww+1 = ww + uw, vn = - r ç ( / , w n )W> wj), n ;> 0. 

To simplify the notation we omit the ƒ 's in the following. Using induction 
we prove the statements Sn\ 

(nl) un e Yan9 \F(un)\an <: v(R - r) • o« • exp( - f A*»), 

(*2) i>w e Yril+l, |t,n|ril+1 ^ K* ~ r) • <r^ exp(-É,ifc»), 

(n3) K I L + 1 ^ K* - r) • <r«"^ exp(-&iic"), 

(n4) wn+1 G J?rn+1, | |«n+1 - w0|lm+1 ^ (« - r)[l - e x p ( - ^ / 2 0 L 

with O O ^ l to be determined later on. *S0 is valid if \F(f9u0)\(T^ 
v - Cx' (R—r) • oQ with C!=exp(—2Af). Assuming the validity of Si9 

i= 1, 2, ••- ,n, we prove Sw+1. Since wn+1, ww G J?rf|+1 c j?s + i, it follows for 

i ^ n + l ) = -(dF(un) o n(un) - 1)(F(«W)) + ô(«n+l» Wn) 

using (i) and (ii) : 

^ 2 l r v M 2 , J^l ,2 

|F0w)L+i ^ , z^Ty I ^ O O L + ; \y(un)(F(un))\rn+1 
\an """ an+l) (Tn+1 "" an+l) ' 

K2 KtK 
+ ; tf T, \f(Un)\ln-i2v (an - 0n+iT+y (TW+1 - ^ . ( . J V , - rn+1) ! 

From this estimate («+1)1 follows immediately. Using then (9) and (4), 
(5), (6) one easily verifies (n + l)(2—4). From (nl) we now conclude that 
F(f9 un)->0 in Z a / 2 as H->OO. Since un+1—un=vn9 it follows from (nl) 
that (ww) is a Cauchy sequence in Ya/2. Calling lim un=u we conclude 
from the continuity of F9 that F(f9 w)=0. From («3) we get for all n 

00 

I K - WoL/2 ^^,\\Vnh/2 

^ 2aq-y~\R - r)exp(-£/*[ic - 1]) < (K - r)crQ-y^ 
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and hence (8). Similarly one gets (7); given (ƒ, u0) such that 

one chooses v such that \F(f u0)\(T=v • Cx • (R—r)oQ. D 
The new idea consists of introducing an approximate right inverse 

r)(f u), see (4), which is an exact right inverse at the solutions oîF(f w)= 
0! For many small divisor problems such an approximate right inverse 
can be provided if one is dealing with a conjugation problem. 

REMARK (SEE [15]). Various modifications of Theorem 1 are possible. 
Under additional conditions for F and rj the above solution f^uf of 
F(f,uf)~0 is Fréchet differentiable even though the problem may not 
have a unique solution. Uniqueness of the solutions uf follows from the 
existence of an approximative left inverse. A similar theorem holds in the 
framework of spaces of differentiable functions using smoothing operators. 

3. An application. For motivation and background consult J. Moser 
[12] and S. Graff [13]. We consider on the manifold M= TnxRnxRmx Rm 

the real analytic mapping 

cp0:(x,y, | , rj) -> (x + co + y,y, A+(*)f, A~(x)rj), 

where A±(x) e L~\Rm) with sup^nOIA+Oc)-1!!, | |A- (X) | | )^<I<1 , and 
where co^ico^ • • • , con) satisfies 

(10) |(<o, fc) - I| ^ y |/c|-^ 

for all integers (k, I), k=(ku • • • , kn)^0,0<y<|, /?>«. The question is, 
when does the invariant torus T0=Tnx (£=0), £=(y, I, rj) survive under 
a perturbation by a real analytic mapping ƒ defined in an open neighbor­
hood of T0. With (99A) we denote the family of mappings 

<px\ (*, y,Ç,rj)-+(x + co + y, y, (A+(x) + A+(x))f, (A~(x) + X-(x))rj), 

where A stands for the pair (A+, X~). For a given mapping ƒ= (fj), 1 ^ / ^ 4 , 
on M and /I=GM0, /h) E &n X L(Rn) we definef^if, f+/*<>+Viy,Uf\ 
With 

Q,p = Qa X Qp = {* I |Im*| < a} x {|£| < p} 

we denote complex neighborhoods of the torus T0. 

THEOREM 2. Given cp0 as above, then for every e>0 there exists a (5>0, 
ô(e, Q.api 990), such that for every real analytic mapping f with | ƒ— 9̂ olo <^ 
there exist two real analytic mappings (px and y):£l(T/2p->Q(Tp, tp=id+w, 
with w(x, £)=oc(x) + (j8(#), £), and there exist constants JU e (Rn, L(Rn)) 
such that 

(0 max{|/4 |a|Qa/t, |fl0<r/i, \^\Q(T/2} < e 



178 E. ZEHNDER [January 

and 

(ii) Ty>oTcpÀ\To = Tf.oTyj]^ 

where T0 denotes the complex torus £iff/2x {0} and T the tangent functor. 

We look at the mappings/M o (id+w) —(id+w) ° <px=<l>(f, W) on Q,ap, 
where (according to the notation in Theorem 2) u==(/u, X, a, /?) is an ele­
ment of the Banach space Ya of vector- and matrix-valued real analytic 
functions defined on the complex torus Qff. One then proves that the func­
tional F, defined by F(f, w)=(<ƒ>(ƒ, u)\^0, d((f>(f, w))|c=0)> d the Jacobian, 
satisfies the assumption of Theorem 1. If ƒ and y0 are globally Hamiltonian 
mappings (i.e. ƒ * 0 — 0—ds, with 0 = 2?=i 7<^*<+2J=i *7i^£j anc* •* a 

function defined on an open neighborhood of T0) then one can show that 
fi=0 in Theorem 2. 

COROLLARY. Let f and cp0 be real analytic globally Hamiltonian mappings 
such that | ƒ— <p<s\çiap is sufficiently small, then there exist two mappings ip and 
(px\£la/<lp-*Clap such that 

Tip o TÇ)À\TQ = Tfo Tf\To, 

T and T0 as in Theorem 2. Moreover the local stable and unstable mani­
folds of the (under/) invariant torus y)(T0) are real analytic and Lagrangian. 

Using the methods of J. Moser [6], [9] we get a perturbation theory 
for hyperbolic tori in the differentiable case. The proofs will appear 
elsewhere. 
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