STABILITY AND TRANSVERSALITY

BY ROBERT D. MAY1

Communicated by Shlomo Sternberg, June 27, 1973

- 1. **Introduction.** Let N and P be C^{∞} manifolds of dimensions n and p and let $C^{\infty}(N,P)$ denote the space of all C^{∞} mappings $f\colon N\to P$ with the fine C^{∞} topology [2, II, p. 259]. A mapping $f\in C^{\infty}(N,P)$ may be stable in either the C^{∞} [2, II] or topological [3] sense. In this paper we state certain results connecting these two concepts of stability. In a related development we also outline a procedure for showing that topologically stable mappings satisfy certain transversality conditions. All of the results given here are based on our thesis [4] to which we refer for proofs and further details.
- 2. A conjecture. It is clear that any C^{∞} stable mapping is also topologically stable, but the converse is false in general. In fact for N compact Mather has shown that the topologically stable mappings are always dense in $C^{\infty}(N, P)$ [3], while the C^{∞} stable mappings are dense if and only if n, p lie in a certain "nice" range [2, VI]. However, one may still conjecture the following:
- (2.1) If N is compact and n, p lie in the "nice" range, then any topologically stable mapping

$$f: N \rightarrow P$$

is also C^{∞} stable.

In [4] we verify the above conjecture for the comparatively simple cases p>2n ("Whitney embedding" range) and p=1 ("functions"). We obtain related results for a more substantial range of dimensions by introducing a "uniform stability" condition.

DEFINITION. $f \in C^{\infty}(N, P)$ is uniformly stable provided that for any family

$$F:(\mathbf{R}^K,0)\to(C^\infty(N,P),f)$$

of maps (parameterized by R^{K} , any K>0) for which the associated map

$$\tilde{F}: N \times \mathbf{R}^K \to P \times \mathbf{R}^K$$

AMS (MOS) subject classifications (1970). Primary 58C25.

¹ This research was partially supported by NSF grant GP-31359-X-1.

is C^{∞} , there exists a neighborhood U of $0 \in \mathbb{R}^{K}$ and homeomorphisms h_{N} , h_{P} for which the following diagram commutes:

A major result of [4] can now be stated as follows:

THEOREM 2.2. Let N be compact and assume n>p, p<7, n<2(n-p+2). Let $f \in C^{\infty}(N,P)$ be

- (a) topologically stable, and
- (b) in the interior of the set of uniformly stable maps. Then f is C^{∞} stable.
- 3. A more general problem. In view of Mather's characterization [2, V] of C^{∞} stable mappings, the major task in proving Theorem 2.2 is to show that f is transverse to each orbit in $J^{p+1}(N, P)$ of the group \mathcal{K}^{p+1} of [2, IV]. We are then led to a more general question treated in [4]. Let $J^k(n, p)$ be the space of k-jets at 0 of C^{∞} mappings $f:(\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$, and let Σ be a submanifold of $J^k(n, p)$ which is invariant under the group \mathcal{K}^k . Then for any N, P we have an associated subbundle $\Sigma(N, P) \subseteq J^k(N, P)$ with fiber Σ . We would like to know whether for any compact N and topologically stable $f: N \rightarrow P$ we have $j^k f$ transverse to $\Sigma(N, P)$. In the next sections we outline the procedure of [4] for attacking this problem.
- 4. **Topological transversality.** We first replace transversality to $\Sigma(N,P)$ by a more "topological" concept. Given $\Sigma \subseteq J^k(N,P)$ and $f \in C^{\infty}(N,P)$, define $\Sigma(f) \subseteq N$ by $\Sigma(f) = (j^k f)^{-1}[\Sigma]$. Also for any submanifold $\Sigma \subseteq J^k(N,P)$ define

$$\operatorname{cod} \Sigma = \operatorname{dimension} J^k(N, P) - \operatorname{dimension} \Sigma.$$

DEFINITION. Let Σ be a submanifold of $J^k(N, P)$ and let $f \in C^{\infty}(N, P)$. Then f is topologically transverse to Σ at $x \in N$ if either $x \notin \Sigma(f)$, or Case A. $n > \text{cod } \Sigma$ and there exist neighborhoods U of x, W of f,

such that $\Sigma(g) \cap U$ is a topological manifold of dimension $n-\operatorname{cod}(\Sigma)$ for all $g \in W$, or

Case B. $n=\operatorname{cod}(\Sigma)$ and there exist neighborhoods U of x, W of f, such that $\Sigma(g) \cap U$ is a single point for all $g \in W$.

It follows from familiar properties of transversal maps that transversality \Rightarrow topological transversality for any f and Σ . The converse is unclear, but we have proved the following [4]:

PROPOSITION 4.1. Let Σ be a \mathcal{K}^k -invariant submanifold of $J^k(n, p)$ which is contained in a Boardman singularity [1] of the form

$$\Sigma^{i_1,i_2,\cdots,i_k}, \qquad i_k = 0.$$

Then a map $f: N \rightarrow P$ is transverse to $\Sigma(N, P)$ if and only if f is topologically transverse to $\Sigma(N, P)$.

PROPOSITION 4.2. Let $\Sigma^i \subseteq J^1(n, p)$ be a first order Boardman singularity [1]. Then a map $f: N \rightarrow P$ is transverse to $\Sigma^i(N, P)$ if and only if f is topologically transverse to $\Sigma^i(N, P)$.

5. Germ classes. Let $C^{\infty}(n,p)$ denote the set of germs [f] at 0 of C^{∞} mappings $f:(\mathbf{R}^n,0) \rightarrow (\mathbf{R}^p,0)$. $[f], [g] \in C^{\infty}(n,p)$ are C^{∞} (respectively, topologically) equivalent if there exist diffeomorphisms (respectively, homeomorphisms) $h_n:(\mathbf{R}^n,0) \rightarrow (\mathbf{R}^n,0)$, $h_p:(\mathbf{R}^p,0) \rightarrow (\mathbf{R}^p,0)$ such that $[f]=[h_p^{-1} \circ g \circ h_n]$. A subset $\Sigma \subseteq C^{\infty}(n,p)$ is a C^{∞} (respectively, topological) germ class if $[f] \in \Sigma \Rightarrow [g] \in \Sigma$ for any [g] which is C^{∞} (respectively, topologically) equivalent to [f]. If Σ is a C^{∞} (or topological) germ class and $f \in C^{\infty}(N,P)$, we can define $\Sigma(f) \subseteq N$ by

$$x\in \Sigma(f) \Leftrightarrow [\varphi\circ f\circ \psi^{-1}]\in \Sigma$$

where $\psi:(U, x) \rightarrow (\mathbb{R}^n, 0)$ and $\varphi:(V, f(x)) \rightarrow (\mathbb{R}^p, 0)$ are local coordinates on N, P.

We call a C^{∞} germ class $\Lambda \subseteq C^{\infty}(n, p)$ generic if $\{f \in C^{\infty}(N, P) | \Lambda(f) = N\}$ is dense in $C^{\infty}(N, P)$ for any N, P. For example the set of germs of all maps satisfying a countable number of transversality conditions will be generic by the Thom transversality theorem [2, V].

In [4] we prove the following basic results relating topological transversality to the existence of appropriate topological germ classes. For these results we assume the source manifold N is compact.

PROPOSITION 5.1. Let Σ be a \mathcal{K}^k -invariant submanifold of $J^k(n,p)$ and Σ_{Top} a topological germ class in $C^{\infty}(n,p)$ such that $\Sigma(f) = \Sigma_{\text{Top}}(f)$ for any topologically stable mapping $f \in C^{\infty}(N,P)$. Then any topologically stable

map $f \in C^{\infty}(N, P)$ is topologically transverse to $\Sigma(N, P)$ at every point $x \in N$.

PROPOSITION 5.2. Let $\Sigma \subseteq C^{\infty}(n,p)$ be a closed C^{∞} germ class and Σ_{Top} a topological germ class. Assume there exists a generic class $\Lambda \subseteq C^{\infty}(n,p)$ such that

- (i) $\Lambda \cap \Sigma_{\text{Top}} = \Lambda \cap \Sigma$;
- (ii) $\Lambda \cap \Sigma$ is dense in Σ ;
- (iii) for any $[g] \in \Lambda$ and any open U containing $0 \in \mathbb{R}^n$, there exists an open $U' \subseteq U$, $0 \in U'$, such that $U' \cap \Sigma(g)$ is connected.

Then for any N, P and topologically stable $f \in C^{\infty}(N, P)$, we have $\Sigma(f) = \Sigma_{\text{Top}}(f)$.

6. Summary. Our procedure for proving transversality properties of topologically stable mappings is then as follows: Given a \mathcal{K}^k -invariant submanifold $\Sigma \subseteq J^k(n,p)$, we write $\Sigma = \Sigma_1 - \Sigma_2$, where Σ_1 , Σ_2 denote closed, \mathcal{K}^k -invariant subsets of $J^k(n,p)$ and also the C^{∞} germ classes in $C^{\infty}(n,p)$ corresponding to Σ_1 , Σ_2 . We next find topological germ classes $\Sigma_{1,\text{Top}}$, $\Sigma_{2,\text{Top}}$ such that the hypotheses of Proposition 5.2 are satisfied by Σ_1 , $\Sigma_{1,\text{Top}}$ and Σ_2 , $\Sigma_{2,\text{Top}}$. It follows that

$$\Sigma(f) = \Sigma_1(f) - \Sigma_2(f) = (\Sigma_{1,\text{Top}} - \Sigma_{2,\text{Top}})(f)$$

for any topologically stable f. But then by Proposition 5.1 any topologically stable f is topologically transverse to Σ . Finally, if Σ satisfies the conditions of Proposition 4.1 or 4.2 we have f transverse to Σ for any topologically stable f.

In [4] the above program is carried out for various Σ . For example we show

PROPOSITION 6.1. Let $\Sigma^i \subseteq J^1(n, p)$ be a first order Boardman singularity with $n \ge \cot \Sigma^i$. Then for any N, P, N compact, and any topologically stable $f \in C^\infty(N, P)$, we have f transverse to $\Sigma^i(N, P)$.

Also, for the range of dimensions considered in Theorem 2.2 we use the above technique to show that any topologically stable $f \in C^{\infty}(N, P)$ is transverse to $\Sigma(N, P)$ for any \mathscr{K}^{p+1} -orbit $\Sigma \subseteq J^{p+1}(n, p)$, provided N is compact and $n \ge \operatorname{cod} \Sigma$. (The uniform stability condition (b) of Theorem 2.2 is then used only to show that $j^{p+1}f \cap \Sigma = \emptyset$ for those Σ with $n < \operatorname{cod} \Sigma$.)

REMARK. When N is not compact, a simple counterexample given in [4] shows that Theorem 2.2 (and Proposition 6.1) fail to hold even for proper mappings. However, analogous results are obtained in [4] for the noncompact case by replacing the condition of topological stability by that of ε -stability.

BIBLIOGRAPHY

- 1. J. M. Boardman, Singularities of differentiable mappings, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21-57. MR 37 #6945.
- 2. J. N. Mather, Stability of C^{∞} mappings. II, IV, V, VI, Ann. of Math. (2) 89 (1969), 254–291; Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), 223–248; Advances in Math. 4 (1970), 301–336; Proceedings of the Liverpool Singularities-Symposium, 1 (1969/70), Lecture Notes in Math., vol. 192, Springer, Berlin, 1971, pp. 207–253. MR 41 #4582; 43 #1215b, c; 45 #2747.
- 3. —, Stratifications and mappings, Proceedings of Dynamical Systems, Salvadore, Brazil, July 1971 (to appear).
- 4. R. D. May, Transversality properties of topologically stable mappings, Ph.D. thesis, Harvard University, Cambridge, Mass., 1973.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

Current address: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112