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1. Introduction. Let N and P be C00 manifolds of dimensions n and p 
and let C°°(W,P) denote the space of all C00 mappings ƒ : N-+P with the 
fine C00 topology [2, II, p. 259]. A mapping ƒ G C°°(iV,P) may be stable 
in either the C00 [2, II] or topological [3] sense. In this paper we state 
certain results connecting these two concepts of stability. In a related 
development we also outline a procedure for showing that topologically 
stable mappings satisfy certain transversality conditions. All of the results 
given here are based on our thesis [4] to which we refer for proofs and 
further details. 

2. A conjecture. It is clear that any C00 stable mapping is also topo­
logically stable, but the converse is false in general. In fact for N compact 
Mather has shown that the topologically stable mappings are always 
dense in C°°(N, P) [3], while the C00 stable mappings are dense if and only 
if A, p lie in a certain "nice" range [2, VI]. However, one may still con­
jecture the following: 

(2.1) If N is compact and n, p lie in the "nice" range, then any topologi­
cally stable mapping 

is also C00 stable. 

In [4] we verify the above conjecture for the comparatively simple 
cases p>2n ("Whitney embedding" range) and/?=l ("functions"). We 
obtain related results for a more substantial range of dimensions by 
introducing a "uniform stability" condition. 

DEFINITION. feC^iN^P) is uniformly stable provided that for any 
family 

F:(RK,0)-+(C™(N,P),f) 

of maps (parameterized by RK, any K>0) for which the associated map 

F:N x RK -+P x RK 

AMS (MOS) subject classifications (1970). Primary 58C25. 
1 This research was partially supported by NSF grant GP-31359-X-1. 

Copyright © American Mathematical Society 1974 

85 



86 R. D. MAY [January 

is C00, there exists a neighborhood U of 0 e RK and homeomorphisms 
hN, hP for which the following diagram commutes : 

A major result of [4] can now be stated as follows: 

THEOREM 2.2. Let N be compact and assume n>p, p < 7 , n<2(n—p+2). 
LetfeC™(N,P)be 

(a) topologically stable, and 
(b) in the interior of the set of uniformly stable maps. 

Then f is C°° stable, 

3. A more general problem. In view of Mather's characterization 
[2, V] of C00 stable mappings, the major task in proving Theorem 2.2 is 
to show that ƒ is transverse to each orbit in JP+1(N, P) of the group 
tfv+i 0f [29 IV]. We are then led to a more general question treated in 
[4]. Let Jk(n,p) be the space of &-jets at 0 of C00 mappings ƒ: (Rn, 0)-> 
(Rp, 0), and let S be a submanifold of Jk(n, p) which is invariant under 
the group Jffc. Then for any N, P we have an associated subbundle 
2 ( # , P)^Jk(N, P) with fiber 2 . We would like to know whether for any 
compact N and topologically stable ƒ: N-+P we have jkf transverse to 
S(iV, P). In the next sections we outline the procedure, of [4] for attacking 
this problem. 

4. Topological transversality. We first replace transversality to 
2(JV, P) by a more "topological" concept. Given 2 £ƒ*(#, P) and 
f e C°°{N, P), define £(ƒ) ç JVby S ( / ) = ( / / ^ [ S ] . Also for any submani­
fold I*^J\N,P) define 

cod S = dimension J*(JV, P) — dimension 2 . 

DEFINITION. Let S be a submanifold of Jk(N, P) and let ƒ G C°°(N, P). 
Then ƒ is topologically transverse to S at x e N if either x $ £(ƒ) , or 

Case A. n>cod S and there exist neighborhoods U of x, W of/, 
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such that 2(g) r\U is a topological manifold of dimension n—cod(2) for 
all g G W, or 

Case B. «=cod(2) and there exist neighborhoods U of x, W of ƒ, 
such that 2(g) n £/ is a single point for all g e W. 

It follows from familiar properties of transversal maps that trans­
versality^ topological trans ver sality for any ƒ and 2 . The converse is 
unclear, but we have proved the following [4]: 

PROPOSITION 4.1. Let Y*be a ^-invariant submanifold ofJk(n, p) which 
is contained in a Boardman singularity [1] of the form 

2 ^ " - \ ik = 0. 

Then a map f:N->P is transverse to 2 (TV, P) if and only if f is topologically 
transverse to 2 (TV, P). 

PROPOSITION 4.2. Let 2* £ J*(#, p) be a first order Boardman singularity 
[1]. Then a rnapf: N-+P is transverse to 2*(7V, P) if and only iff is topologi­
cally transverse to 2*(7V, P). 

5. Germ classes. Let C°°(n, p) denote the set of germs [ƒ] at 0 of C00 

mappings ƒ : (*" , 0 )^ (2^ ,0 ) . [ƒ], [g] e C00(n,p) are C00 (respectively, 
topologically) equivalent if there exist diffeomorphisms (respectively, 
homeomorphisms) hn:.(R

n, 0)->(JT, 0), hv:(R
p, 0)-+(Rp, 0) such that 

[ƒ] = [h~x <- g o hn]. A subset 2 ^ C00 («,/?) is a C00 (respectively, topological) 
germ class if [ / ] e 2 = > [ g ] e 2 for any [g] which is C00 (respectively, 
topologically) equivalent to [ƒ]. If 2 is a C00 (or topological) germ class 
and ƒ G C°°(7V, P), we can define 2 ( / ) c JV by 

xe^{f)o[(pofoW-^]ei: 

where ^:(£/ , x)->(i?n, 0) and <p:(V,f(x))-+(Rv, 0) are local coordinates 
on TV, P. 

We call a C00 germ class A ç C°°(«,p)generic\f {ƒ G C°°(#, P)|A(/)=iV} 
is. dense in C°°(7V, P) for any TV, P. For example the set of germs of all 
maps satisfying a countable number of transversality conditions will be 
generic by the Thorn transversality theorem [2, V]. 

In [4] we prove the following basic results relating topological trans­
versality to the existence of appropriate topological germ classes. For 
these results we assume the source manifold TV is compact. 

PROPOSITION 5.1. Let 2 be a ^-invariant submanifold ofJk(n,p) and 
2 T o p a topological germ class in C°°(w,/?) such that 2 ( / ) = 2 T o p ( / ) for 
any topologically stable mapping f e C00(A/r, P). Then any topologically stable 
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map feC°°(N9P) is topologically transverse to 2(iV, P) at every point 
xeN. 

PROPOSITION 5.2. Let S çC 0 0 (n9p) be a closed C00 germ class and 
STop a topological germ class. Assume there exists a generic class A ç 
Cco(n,p)such that 

(i) A n S T o p = A n S ; 
(ii) A n S is dense in 2 ; 

(iii) for any [g] e A and any open U containing 0 e Rn, there exists an 
open t / ' g ^ O e t / ' , such that U' n2 (g ) is connected. 

Then for any N, P and topologically stable f e Cco(N,P)9 we have 
S ( / ) = S T O p ( / ) . 

6. Summary. Our procedure for proving transversality properties of 
topologically stable mappings is then as follows: Given a Jf^-invariant 
submanifold SçJ , < :(«,p), we write S=S1—S2> where 2 l 5 S 2 denote 
closed, JfMnvariant subsets of Jk{n9p) and also the C00 germ classes in 
C00(n9p) corresponding to S l 5 2 2 . We next find topological germ classes 
£I,TOP> ^2,ToP such that the hypotheses of Proposition 5.2 are satisfied by 
S1? 2 l f T o p and S2 , 22 > T o p . It follows that 

£(ƒ) = S x ( / ) - S 2 ( / ) = (S1 > T 0 P - S2 ,T o p)(/) 

for any topologically stable/. But then by Proposition 5.1 any topologi­
cally stable ƒ is topologically transverse to 2 . Finally, if S satisfies the con­
ditions of Proposition 4.1 or 4.2 we have/transverse to S for any topo­
logically stable ƒ 

In [4] the above program is carried out for various 2 . For example we 
show 

PROPOSITION 6.1. Let 5? ^Jx{n9 p) be a first order Boardman singularity 
with n^cod 2*. Then for any N9 P9 N compact, and any topologically 
stable f e C°°(7V, P), we have f transverse to 2*'(N, P). 

Also, for the range of dimensions considered in Theorem 2.2 we use 
the above technique to show that any topologically stable ƒ G C°°(iV, P) 
is transverse to Z (# , P) for any jr*+1-orbit S ^Jp+l(n9p)9 provided N is 
compact and n^cod 2 . (The uniform stability condition (b) of Theorem 
2.2 is then used only to show that jp+1f n S = 0 for those S with «<cod 2.) 

REMARK. When N is not compact, a simple counterexample given in 
[4] shows that Theorem 2.2 (and Proposition 6.1) fail to hold even for 
proper mappings. However, analogous results are obtained in [4] for the 
noncompact case by replacing the condition of topological stability by 
that of e-stability. 
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