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In this sketch, I will try to indicate how cardinality questions and 
manipulations became intimately connected with homological algebra. 
The modern form of this subject stems from the book Homological algebra, 
by H. Cartan and S. Eilenberg, published in 1956. What began as a study 
of dimension via derived functors branched off into a study of dimension 
via cardinality and came back to a study of derived functors via cardinality. 
I will give an historical sketch of this. All rings are associative with 1, 
all modules are unital right modules unless otherwise stated. 

1. Projective dimension and Ext. Let us begin by defining the main 
topic of concern, projective dimension. Let M be an 7^-module. Then 
We can express M as a quotient of a free it-module; for example take the 
obvious epimorphism from Po=(&xeM Px

 t 0 M. One gets a short exact 
sequence of modules 

O - ^ - ^ P o - ^ M - ^ O . 

If one defines an equivalence relation on the category of right i£-modules 
by Ar^B if and only if there exist free ^-modules P and P' such that 
A(BP?vB(BP\ then the equivalence class of Kx depends only on the 
equivalence class of M. Now iterate this procedure to get a family of 
short exact sequences 

o->*:!->• p 0 - * M - > o 

0 -> K2 -> P1 -> Kx -> 0 

(*) 

0 -*- Kn -> Pn_x -> Kn_x -> 0 
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or, all put together, one long exact sequence 

called a projective resolution of M. (The Pt must be projective, but not 
necessarily free.) The projective dimension of M, pd(M), is the smallest n 
such that Kn e class (0) (i.e., Kn is projective) or oo if no such n exists. 
Alternatively, one can use the derived functors Ext of Horn. For any 
right P-module A, we horn each of the short exact sequences (*) into A. 
Since Hom( , A) is left exact but not exact, we have cokernels, called 
Ext 

0 - • Hom(M, A) -> Hom(P0, A) -> Hom(^ l 5 A) -> Extx(M, A)-+Q 

0 -> H o m ( ^ , A) -> Hom(P l5 A) ~> Hom(A:2, A) -> Ext2(M, A)^0 

(**) 

0 -> Uom(Kn9 A) -> Hom(Pw, A) -> Hom(#w+1, A) -> Extn+1(M, A)-+0 

Now if Kn is projective, 0^Kn+1-+Pn-+Kn-+0 is split exact, so 
Extn+1(M9A)=0. Moreover, if Extn^(M, Kn+1)=0, 0-+Kn+1-+Pn splits, 
so Kn is projective. We thus have 

pd(Af) <; « o E x t n + 1 ( ^ > 4) = 0 

for all modules A, where Ext*(M, A) is the homology of the complex 

H o m B ( ^ , ^ ) :0 -> HomjR(P0, ^ ) -> Hom i,(P1, ^ ) -> • • • 

— BomR(Pn, A) -> • • • 

The (right) global dimension of R is the supremum of the projective 
dimensions of all right i£-modules. The global dimension of R-^nothe 
bifunctor Extn44(y4, B) vanishes identically. 

There is another important dimension obtained from a projective 
resolution of M, namely the weak dimension of M. This is the first n 
such that Kn is flat (Kn®R is exact), or the first n such that Torw+1(M, ) == 
0 where Tor* (M, A) is the homology of the sequence 

>Pn®RA-+ >PQ®RA-+0. 

The weak global dimension of R is the smallest n such that Torw+1(>4, B) = 
0. Whereas Ext involves modules on only one side, Tor involves both 
right and left modules. Since there is a "commutativity" property for 
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derived functors of bifunctors, the left and right weak global dimensions 
of a ring are equal, but there was no reason to believe the same was 
true for global dimensions (indeed it is not) and Cartan-Eilenberg posed 
the question of equality in Chapter 1 of their book on homological algebra 
[8]. 

A word about the definition. This kind of thing is the standard fare 
of algebraic topology. In algebraic form it can be found in the famous 

THEOREM (HILBERT SYZYGY THEOREM, 1890 [19]). Let A be a graded 
module over the graded polynomial ring R=F[xx • • • xn] in n indeterminants 
{of degree 1) over a field F\ Then any exact sequence 

of graded R-modules with the Pi free has its nth term Knfree. 

The word syzygy just means module of relations. Here not only projec-
tivity, but freeness of the nth syzygy is asserted. Hilbert was concerned 
with modules of forms invariant under a group of linear transformations 
so the graded restriction was natural. This result lay dormant for a while, 
until Gröbner (1949) [16] simplified Hilbert's proof, and Koszul (1950) 
[32] put the result in a modern topological setting. Cartan (1952) [7] 
first applied homological methods to generalize the theorem. The ter­
minology Ext, for extensions, was introduced by Eilenberg and Mac Lane 
in 1942 [13] in studying the universal coefficient theorem of topology. 
Ext(M, A) can be interpreted as extensions of A by M, that is, short 
exact sequences 0-+A-+E-+M-+0 modulo an appropriate equivalence 
relation. 

These were just some of the historical developments prior the advent 
of the Cartan-Eilenberg book. Even before it appeared in print, 
Homological algebra exerted its influence on the new subject it was 
launching, tying together various homological and cohomological 
dimensions as in topology, groups, Lie algebras, the previously named 
Ext (=Extx) and Tor (=torsion product), and setting the notation 
(such as Extn) and ideas pervading the subject thereafter. This book 
marks the real beginning of the subject of homological algebra as an 
area of interest in its own right. It also makes the derived functors Ext 
(and Tor) the "natural" way of looking at homological dimension. 

2. Some examples and early results. Let us look at some examples 
of low dimensions (with terminology adapted to the modern context). 

THEOREM (WEDDERBURN-ARTIN). The following are equivalent: 
( i )g ld ( i* )=0 . 

(ii) R is a finite ring direct product of matrix rings over division rings, 
(iii) R has minimum condition on right ideals and no nilpotent ideals. 
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THEOREM. Let Rbe a commutative domain. Then R has global dimension 
^ 1 if and only ifR is a Dedekind domain {the kind axiomatically studied 
by E. Noether in 1927 [43] distilling the essential properties of algebraic 
number rings). 

THEOREM (HOCHSCHILD, 1946 [21]). Let F be a field, R a finite-
dimensional F-algebra. Then R is separable {that is, for all extension 
fields L^F, R (g)F L is semisimple with minimum condition) if and only if 
pàR0FRop{R)=O. 

Let us look at one of the early results in projective dimension theory 
and how it was proved. The Nagoya Journal had a whole series of papers 
"On the dimensions of modules and algebras" in the 1950's. Much of 
the work involved Ext and Tor (and special rings such as semiprimary 
and hereditary rings). Number 3 in the series had a large portion of this 
type. However, the first sections were of a different nature, and it is they 
that interest us here. 

PROPOSITION (AUSLANDER, 1955 [1]). Let A be an R-module, I a 
nonempty well-ordered set and {A{\i e 1} a family of submodules of A such 
that for all i, je I, i^j^A^Aj. IfA — \JieIAi and pd{Ail\jj<iA3)^n 
for all i e I, then pd{A)^n. 

This proposition has several corollaries, the first two of which were 
Auslander's aim in proving the proposition. 

COROLLARY 1 (GLOBAL DIMENSION THEOREM). Gl d {R)=sup{pd{R/I)\l 
a right ideal of R}. 

COROLLARY 2. Let R be a left and right noetherian ring {i.e. every 
one sided ideal is finitely generated). Then left gl d {R) = weak gl d {R) = 
right gld{R). 

The first corollary is derived by well ordering a set of generators for 
an i^-module A and setting ^a=2/?<a xpR. The second follows from the 
first since finitely presented flat modules are projective, so in the noetherian 
case pd(i£//)=weak dimension {R/I). 

Our third corollary was not stated by Auslander, but is immediate from 
his proposition and the result that for any short exact sequence 

0-+A-+B-+C-+0 

pd{A)^k and pd{B)^k implies pd(C)^k + l. This is provable trivially 
using the long exact sequence for Ext, but also not difficult to do directly 
by an induction argument. 
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COROLLARY 3. Let M be an R-module generated by Kn elements for 
new. Assume there exists a family of submodules of M, {iVa |ae3} 
directed under ç= such that M=^ae3 Nx and ^(N^^k for all a e 3 . 
Then pd(M)^k+n + \. If in addition, {ATa|aG3} is closed under unions 
of countable chains (respectively chains of length Kp), then pd(M)^k+n 
(resp. k+n—p). 

That this corollary to Auslander's proposition was considered obvious 
was apparent from an early reference. Kaplansky, in 1958 [29], constructed 
an example of a ring which had right global dimension 1 and left global 
dimension > 1 . Then Kaplansky went on to say that a regular ring of 
cardinality Xx (his example was regular of cardinality 2X<>) has global 
dimension at most 2 by a theorem of M. Auslander. The reference was to 
Corollary 3, which Kaplansky felt so obvious he did not have to state it. 

This proposition of Auslander and Corollary 3 and its variants are to 
this day the major way of getting upper bounds on projective dimensions, 
at least as far as cardinalities > N0 are concerned. But connections between 
projective dimensions and cardinals >K 0 were very far from the major 
applications of homological dimension during the next decade. For one 
thing, the influence of derived functors was so strong that, when Matlis 
(1959) [37] came out with a short, elegant proof of the global dimension 
theorem using properties of Ext, it completely replaced the Auslander 
proof as "standard fare". Matlis pointed out that, by a standard test for 
injectivity, MR is injective if and only if Ext 1 ^/ / , M ) = 0 foi all right 
ideals /. Using "commutativity" of Ext, 

Extw+H , M) = O o E x t ^ C R / / , M) = 0 

for all right ideals / ç R so 

Extn+1 = 0<=>Extn^(RlI, ) = 0 for all I ^R. 

In Mac Lane's Homology [35], it is Matlis' proof that is given. Jans in 
the summer of 1961 gave the Auslander proof of the global dimension 
theorem in lectures at the University of Oklahoma [22]. When these 
lectures were modified into his 1964 book Rings and homology [23], 
Matlis' proof was given. Elegant as it was, the Matlis proof of the global 
dimension theorem completely bypassed Auslander's proposition and its 
consequences for upper bounds on dimensions. 

3. A major success—regular local rings. All of this was overshadowed 
by the fact that homological dimension was having its biggest successes 
elsewhere, in particular in the study of regular local rings in commutative 
algebra. The study of commutative noetherian rings and finitely generated 
modules over them had a long and honorable history. The classical work 
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of E. Noether (1921) [42] set it off on axiomatic terms, but its connections 
with algebraic geometry, number theory, polynomials over a field, 
etc. were what led to this work. In 1938 [33], Krull recognized the signif­
icance of a certain class of commutative noetherian local rings, namely 
those where the number of generators of the maximal ideal M was equal 
to the height of M (=Krull dimension of the ring). These later came to be 
referred to as regular (groan) local rings. (What an abused word "regular" 
has become. It was used earlier in this paper with an entirely different 
meaning which preceded the commutative algebra nomenclature. And 
its uses elsewhere in mathematics are myriad.) In algebraic geometry, 
regularity corresponds to nonsingularity of a point on an algebraic 
variety (Zariski, 1947 [54]). For the regular local rings arising in algebraic 
geometry, Zariski showed that R is a unique factorization domain and for 
every prime ideal P of R, RP is regular. Krull in 1938 had asked if these 
properties held for arbitrary regular local rings. I. S. Cohen (1946) [9] 
answered the questions affirmatively for other special cases, but it remained 
for homological dimension theory to settle the general questions. The 
landmark theorem was 

THEOREM (AUSLANDER-BUCHSBAUM, 1957 [3], SERRE, 1956 [51]). Let 

R be a commutative noetherian local ring with maximal ideal M. Then 
the following are equivalent, 

(i) R is regular local of dimension n (n=ht M=minimum number of 
generators of M). 

(ii) pd(R/M)=n. 
( i i i )gld (*)=«. 

COROLLARY. Let R be a regular local ring, P a prime ideal of R. Then 
RP is a regular local ring of dimension=ht P. 

Homological methods also led to the solution of the unique factoriza­
tion problem of Krull which Nagata had reduced to the case of dimension 
3. 

THEOREM (AUSLANDER-BUCHSBAUM, 1959 [4]). A regular local ring 
is a unique factorization domain. 

With such great successes obtained by its use, homological dimension 
theory was firmly entrenched in the study of finitely generated modules 
over commutative noetherian rings. Here the problems of infinite car­
dinals were completely irrelevant. Not even choice was necessary—the 
ascending chain condition replaced Zorn's lemma. 

4. Cardinality comes in. Although the use of derived functors and 
the applications in the noetherian case almost completely eclipsed car­
dinality questions in homological dimension, there were some results in 
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the countable case during this time. Berstein (1958) [6] showed that a 
countable direct limit of modules of projective dimension ^k had dimen­
sion <k + l. Jensen (1966) [25] showed that a countably related flat 
module had dimension <H. This result could also be obtained from Ber-
stein's result and Lazard's theorem that a flat module is a direct limit 
of finitely generated free modules [34]. (The indexing set size can be 
reduced.) By manipulating to get the form of the third corollary to 
Auslander's proposition, Osofsky (1968) [47] extended these results to say 
that if D is a directed set of cardinality Nw, then 

pdOim^ Mt) ^ sup{pd(M,) \ie D} + n + I 

and for any Xw-related flat module M, 

pd(M) <; n + 1. 

This pointed out the foresight in Kaplansky's observation on constructing 
rings of differing right and left global dimensions. As a corollary, any ring 
of cardinality Xn has global dimension and weak global dimension differing 
by at most n + l, so left and right global dimensions can differ by at most 
/i + l. To see the bound on gl d-weak gl d, resolve a cyclic. At the weak 
global dimension step you have an Xn-generated flat kernel, with p.d. at 
most n + l. Small in 1966 [53] used Kaplansky's example to construct a 
ring with left and right global dimensions differing by 2, but that is as far 
as you can go in Zermelo-Frankel plus Choice+Continuum Hypothesis 
with a ring of cardinality 2X°. 

The first irrefutable indications that cardinality was intimately tied up 
with projective dimension came in 1967 in two separate papers where 
lower bounds as well as upper bounds on dimensions were calculated 
in terms of subscripts of cardinalities. For convenience we let X_x denote 
any finite cardinal and oo any cardinal g:co. 

THEOREM (PIERCE, 1967 [48]). Let R be a free Boolean ring on Hn 

generators. Then gl d (R)=n + l. 

THEOREM (OSOFSKY, 1967 [44]). Let R be a valuation domain, I an 
ideal ofR. Then pd(7)=n + lol is generated by #n but no fewer elements. 

This theorem holds if R is any ring and / any module with a linearly 
ordered set of free generators with a condition insuring it holds for «=0 . 

The upper bounds indicated in these theorems are consequences of 
Auslander's proposition (although in the second paper a different tech­
nique was used). Both papers used a specific projective resolution to get 
a lower bound. The resolutions were similar but not identical. As these 
same resolutions were used to get other lower bounds, I will postpone 
discussion of them until a later point. 
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These results have a strong tie-in with the continuum hypothesis, but 
only in an artificial way. You are plugging in the cardinality. I know of no 
"natural" way to get a valuation domain possessing an ideal generated 
by Xw but no fewer elements without essentially plugging in the Kn. 
A "natural" 2xo-generated free Boolean ring can indeed be described, 
but is not at all "obvious". 

In the next results, however, the continuum hypothesis is there, loud and 
clear, even though the phraseology is still in terms of Hn. 

THEOREM (OSOFSKY, 1970 [46]). Let {Ri\ieJr} be a family of rings 
such that R contains the ring direct product Ylies Ri as a subring. If 
|2^| = Nn, then R contains a right ideal I generated by idempotents {charac­
teristic functions of subsets of J} such that pd(/)=w. 

COROLLARY. Let {F\i e co} be a family of fields. Then 

g l d ( n ^ ) = « + l^>2Ko = Xw. 

THEOREM (OSOFSKY, 1968 [45]). Let R be a ring of cardinality Xw 

and global dimension k such that either 
(i) R is regular local and \R\ = \R/M\, 

(ii) R is complete regular local, or 
(iii) R=F[xl9 • • , xk], F afield. 

Let Q be the quotient field of R. Then pd(0=min(&, n + l). 

For any local domain R and for "large" polynomial rings, Kaplansky 
showed pd(Q)=loQR countably generated in 1966 [31]. The proof of 
this theorem used his technique. 

COROLLARY. 

pd(R(x,y, z)nXyy>z]) = 2 o 2 N » = ^ o p d C Ô C C ^ ƒ, Z))Q[[X,V,Z}}) = 2-

Upper bounds for the results in §4 are, as indicated earlier, from Corol­
lary 3 to Auslander's proposition. The necessary lower bounds are ob­
tained by looking at specific projective resolutions with appropriate 
induction steps. The corollaries indicate that we are talking about things 
that "exist in the real world", not just strange X's that are pulled out of 
a foundational hat. The cardinalities in question are 2**<>; the relevance 
to where it lies in the well ordering of the cardinals is purely a consequence 
of the results. 

5. Technical sketch of the method of proof of cardinality results. This 
section may be lightly skimmed over or skipped on first reading by the 
reader not interested in technical details. More general discussion resumes 
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in §6, p. 18. Let me give you an idea of what is involved in the proofs of 
the necessary lower bounds. The proofs are by finite induction. 

In the case of the first theorem (Osofsky, 1970 [46]), we look at right 
ideals generated by commuting idempotents. We throw on an extra 
condition to handle the case « = 0 and prevent collapse of generators in the 
inductive step. This independence condition reduces to the condition that 
the idempotents together with 1 form a free Boolean ring under addition 
e+f— ef and multiplication as in the ring. In any product indexed by J, 
there is such a set of cardinality \2J\, giving the claimed results. 

Specifically, one gets a family of idempotents {et\ie^} such that for 
all i,je% ^iej=ej^i and for disjoint finite subsets {e^l^l^m} and 

m k 

n«.n o-^°-
Assume 3 is linearly ordered. Set P-1 = ^je^ eóR. Now introduce symbols 
(jo, * * * >jn)

 t 0 represent a basis for the free i^-module indexed by 3 n + 1 . 
For n^.0, set 

?n= © (J0,--JjfleUR 

J0<Jl<-<Jn l==0 

and define dn:Pn->Pn_1 as the map induced by d0{j0)=eJQ, and for n>0 

n n 

dn(j^ - - • ,jn) = 2 (-^yO'o» • * * >yY-i>;Vi-i> • • * >jn) Yl eh-
1=0 1=0 

T h e n 

<&* . . . > p dn > p * . . . . > p d° > p v 0 
w. > rn > *n-i ^ > ro > r-i >u 

is a projective resolution of P_x. The symbol <j0, • • • 9jn) is an indexing 
notation indicating the sum is taken over the appropriate subset of 
<^n+l 1 

The projective resolution for the quotient field theorem (Osofsky, 
1968 [45]), the valuation domain theorem (Osofsky, 1967 [44]), and some 
later applications is similar. Let M be a module possessing a set of genera­
tors {Xi\i e 3} such that 

(i) 3 is a directed set (under a relation < ) , 
(ii) For all r e R and for all / e 3 , x/=0<=>r=0 (freeness), 

(iii) i<j^>xiR^xjR. 

1 This same resolution for a set of commuting idempotents satisfying a somewhat 
different condition has been used by Osofsky, Proc, Amer. Math. Soc. 41 (1973), 
24-30, to modify Hochschild's 1946 result to the Theorem: Let K be a separably 
generated ^-generated field extension of a field F. Then ipdJ[^FK(K) = l+k-\-tr deg(K). 
Rosenberg and Zelinsky [50] and MacRae [36] set the stage for this result. 
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Set P_X=M. Define: For «^0, 

* n = © 0*0? * * * yjnïRy 
j0<"'<jn 

d0(jo) = Xj0, 
n~X 

+ (~ i r<yo , - - 5 y ; - i><K_ 1 ) , 

where xj*(xjni) is that unique element in R such that ^n^1(^n_1)=^n_1« 
Then 

• • • - P „ - , p 0 ^ M - + 0 

is a projective resolution of M. 
In the valuation ring example, M is the ideal whose dimension is to 

be calculated; in the calculation of the dimension of a quotient field, 
M is a specific kind of submodule of Q and the x{ are reciprocals of a 
nonzero multiplicatively closed set 3-

In both projective resolutions, for the case of commuting idempotents 
and for the case of directed torsion-free modules over a domain, assuming 
dkPk is projective, one uses a snaking argument of Kaplansky (1958) [30] 
to get a direct summand of dkPk of the form 

1 e </o>---,y*>(lTk)*) 
where the jl are taken over some subset 2 of 3- Write this as dkPk(2). 
Transfinite induction will give such an 2 for any cardinal <|3I- Hopefully 
one can then use induction on n, where |3 | = Nn. We need two things, 
a basis and an induction step. 

For the basis in the idempotent generated ideal case, we must have 
1317e ^o implies P_t is not projective. That is one place we use the hypoth­
esis nS=i ei Tli=m+i (1 — edyéO if the et

9s in the two products are distinct. 
The valuation domain and polynomial ring basis results are straight­
forward; in the case of a regular local ring the argument is messier 
(Kaplansky, 1966 [31]). 

The easiest induction step occurs in the case when the indexing set is 
linearly ordered such that no ordinal of cardinality ^ Hk is cofinal in it. 
For then one can take r an upper bound for 2, where |£| = ük and dkPk(2) 
is a direct summand of xdkP. This gives that dkPk(2) is actually a direct 
summand of Pk_1 so P^{2) has dimension ^fc— 1. The argument works 
for any module with linearly ordered free generating set {xt-|/e3} 
provided xir—xj implies r is not a zero divisor (to insure the basis for 
n=0). Jategaonkar (1969) [24] used this fact to show that he could 
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construct a left principal ideal domain of cardinality Nw possessing a 
right ideal of dimension n + l for any n. Such a ring must have left and 
right global dimensionr differing by n + l, thus completely settling the 
old conjecture in Cartan-Eilenberg. 

In the case of the quotient field theorem, the induction step is much 
more difficult, as the global dimension of the ring can get in the way. 
Kaplansky's 1966 argument, used in the case n=0, is again employed to 
reduce not only the cardinality but also the global dimension of the ring. 
The modules M looked at have a condition to insure that the number of 
generators does not decrease when one goes to a lower dimensional quo­
tient ring. One might note that these arguments make no reference at all 
to Ext. 

An outstanding paper by Gruson and Raynaud (1971) [18] chooses, 
as an application of a discussion of descent of flatness and projectivity, 
to extend the quotient field result to any complete noetherian commu­
tative domain. Here k is the Krull dimension of the ring. There is no 
necessity to use derived functors in this result. 

6. When derived functors vanish. Just because thinking of projective 
dimension in terms of the vanishing of the derived functor Ext was a factor 
in obscuring the intimate relationship between the projective dimension 
and cardinality of some modules, there is no reason why that latter 
relationship cannot be used to shed light on the vanishing of derived 
functors. With spectral sequences giving information on composite 
functors when appropriate derived functors vanish, one family of derived 
functors receiving attention were those associated with limp and lim^, 
where D is a partially ordered set. 

Let us recall the definition. Let D be a partially ordered set, and let 
{Ma, Ui\oi9 J S G D , a^/3} be a system of iÊ-modules indexed by D and 
jR-homomorphisms indexed by the relation <jj such that H^\Ma-^M^ 
and 11$ nf =Ul for 0L<f}<y. limp Ma is an IE-module together with a 
family of morphisms IIa:Ma->limjr) Ma such that for all oc</? 

Ma iis • Mp 

lim Ma 

commutes and if, for a family of morphisms vx:Ma->N9 va=VpTli9 

then there is a unique map g:limD Ma~>N such that we get a 
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commutative diagram 

v*. 

To define limp, simply reverse every arrow in the above definition (so 
you start with an inverse system nf '.Mp-^M^ for oc</?). 

limp and limp are functors, for let ƒ be a map from the system {Ma} 
to the system {Na}, that is, we have the commutative diagram 

nf 

and the parallel diagram for limp with arrows reversed. These functors 
arise in studying the composite functors 

Horn (limp Afa, A) & limp Hom(Ma, A) 

and (limp Ma)<S>A9 and have topological interpretations as well. One is 
particularly interested in whether they vanish from some point on so one 
can use a convergent spectral sequence to compute derived functors. 
We have actually already computed the derived functors lim(fc) of limp 
for D a directed set. (They are all zero for kèzl.) The projective resolution 
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constructed to compute pd(M) where M has a partially ordered set 
{xa|oce3} of free generators is, by a result of Roos (1961) [49] and 
Nöbeling (1962) [41], precisely the complex whose homology gives 
lim(fc){xaJR|x^jRq:xai^Vj3<oc}. The statement that it is exact is the statement 
that lim(fc)=0 for all Argil when 3 is directed, or that the category of 
modules over a ring is AB5. lim^ Ma for a partially ordered set D has a 
somewhat similar increasing resolution whose cohomology gives l imp^MJ. 
Nöbeling used these sequences to calculate a bound on when lim(fc) and 
lini(fc) vanish for very special partially ordered sets. Roos (1961) [49] ob­
tained results on the vanishing of l im^ for k^.2 when D is countable and 
directed, and stated that there is a natural isomorphism from the derived 
functors lim^) over a directed set D to the derived functors lim(a) over a 
cofinal subset C. A written proof (modified to cover cofinal maps which 
were not embeddings) appeared in C. U. Jensen's 1972 Springer Lecture 
Notes [28]. An even more general version with directed sets replaced 
by closely related categories and cofinal maps replaced by cofinal functors 
appeared in a paper by Mitchell (1973) [39]. Mitchell's argument is 
basically taken from Cartan-Eilenberg. Other results on the vanishing 
of limS) were obtained under assumptions on R or the modules in the in­
verse system or smallness of k or of |Z>|, but the next really general step 
was 

THEOREM (GOBLOT, 1970 [15]). Let D be a directed set of cardinality 
Kn. Then lim%+l) =0 for all 1^2. 

What does all this have to do with projective dimension (besides the 
coincidence that a useful projective resolution is exact because lim^ is 
exact). Mitchell (1972) [38] obtained a different proof of Goblot's theorem, 
and at the same time showed that the bound was very precise. Indeed, he 
showed that if D is a totally ordered set of cofinality Xn, then l i m ^ ^ ^ O . 
His 1973 paper [39] with the generalization of Roos' cofinality result 
removes the totally ordered restriction since if the cofinality of D is Hn 

one can find a cofinal functor F.D-+TI where n is the first ordinal 
of cardinality Xn. Then F induces an isomorphism from limii* to lim^) 

so since lim(n+1) does not vanish, neither does lim^+1). The case n^ico 
requires a little additional argument, which uses the same idea as the 
totally ordered case. We thus get the 

THEOREM (MITCHELL, 1972 [38] and 1973 [39]). Let D be a directed 
set possessing a cofinal subset of cardinality Xw but no cofinal subset of 
smaller cardinality. Then l im^ + 1 ) ^0 , but l i m ^ + ° = 0 / o r all / ^ 2 . 

Note that the ring R is irrelevant in this result. We have sketched how 
to reduce the proof to the totally ordered case, but how does the proof 
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in that case go ? The answer is that it is identical with the calculation of the 
dimension of an ideal in a valuation domain, but in a more general con­
text. After a collection of categorical definitions have been made, a student 
is often faced with an example—a ring is a small additive category with 
one object; a module is an additive functor from the ring to stfê, and 
iMiomomorphisms are natural transformations. These definitions carry 
over to any small additive category fé7. Smallness is necessary for foun­
dational reasons—if the objects of ^ form a proper class rather than a 
set, modules become proper classes and so cannot belong to any set. 
Indexing becomes impossible and there simply is no good way to talk 
about modules. Pictorially, what do we have? We have a category ^ 
which is a collection of objects and maps, say 

a /? e 

To each object we assign an abelian group, and to each map we assign 
a group homomorphism in an associative manner. 

à /? ë 

Mv ^ - ^ ^ ^ MQ ^^^>* Mr 

- - - J 

The assignment looks exactly like module multiplication by a ring element, 
except that you can only compose if domains and codomains agree. 
An element of a ^-module is an element of some Mv (tagged by p). Let 
M be a ^-module with a linearly ordered set of free generators \x,\i e 3} 
such that XjT^Xj implies r is not a zero divisor. The ring theoretic proof 
that pd(M)=« + l if and only if the cofinality of 3 is Xn goes through 
almost word for word. You have to change your thought processes slightly, 
but the changes in the words written down are miniscule. 

How does this apply to the derived functors of lim? Let II be a partially 
ordered set, n o p the opposite ordering of II interpreted as a category 
with a single morphism from i toy for allyrgz in II. We construct a new 
small category, the "category ringoid" i£lIop with coefficients in R such that 
the objects in i*IIop are the same as the objects in II, and the morphism 
group RU°v(p,q) is the free i?-module with basis the set of morphisms 
from p to q in IIop. (In the partially ordered set case there is at most one 
such morphism, but one can do the same construction for an arbitrary 
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small category, rather than just IIop, so we will phrase things in a more 
general manner.) Morphisms in jRIlop are composed by: for all a:/?~>ç, 
(ï'.q-+u e nop, and for all r, s e R, fis o ar=(/9 o oî)sr (plus the distributive 
law in a more general category where there may be more than one mor-
phism between objects). We restrict module functors to take values in 
the category of iÊ-modules and homomorphisms (rather than just <s$4). 

One particular JRIIop-module is of significance. Let Ai? (technically 
AnoPi? denote the functor such that 

AR(p) = R for all objects p of II, 

AR(OL) takes 1 to 1 for all a:p-+q in IIop. 

Pictorially we have 

R 

I 
Objects and • • • p 
morphisms in 
nop 

Let M be any i?IIop-module (functor from jmo p to ^ ^ right R-
modules). We get an inverse system of jR-modules indexed by II 

M% Mr
q M*r 

Mv < MQ < Mr < Ms 

p<q<f<s 

and we can find its limit, limn Min the category of right i?-modules. That 
is, limn is a functor from i?nop modules to i£-modules. What is that 
functor? Let ƒ G HomEnop(AjR, M), that is, ƒ is a natural transformation 
giving commutative diagrams of IE-modules 

\fj> \fq 

Y « Y 

P Û 

By definition of limn, there exists a unique map <£(ƒ): i?->limn M such 

id « W ^ id ^ 

— R<—R<—R 

ordering of II-
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that 
M j, < MQ 

commutes. Moreover, any jR-map from R to limn M gives rise to a natural 
transformation from AR to M obtained by composition with the vp. 
It is easy to check that $ is a natural equivalence between the functors 
Hom^nopCAi?, M) and HomR(R, limn M) which is naturally equivalent 
to the functor limn M. Since naturally equivalent functors have naturally 
equivalent derived functors, Extn(A7?, ) is naturally equivalent to limn*-
But Extn+1(Ai?, ) is identically zero if and only if pd(AR)<^n. For each 
p G II, let xv be the element of AR consisting of 1 at object/? and zeros 
elsewhere. If p<q, then there is a morphism u in J^nop such that xp~xqu, 
namely w=(map from q to p) • 1. It is clear that u is not a zero divisor, 
that is, if vu or uv is defined, it is nonzero if and only if v is nonzero. 
Moreover, any element of AR (=element in some AR(p)) is of the form 
xp • r for some r e jRlIop, and xv • r=0 implies r=0. Thus the {xv\p e 11} 
form a set of free generators for the module AR. An upper bound on the 
projective dimension follows from Corollary 3 to Auslander's proposition 
and if n is totally ordered, pd(AjR)=« + l if and only if Xw is the smallest 
cardinal cofinal in II if and only if Extn+1(Ai£, ) is the largest non-
vanishing Extw(AR, ) if and only if limn+1) is ^ e largest nonvanishing 
derived functor of limn. The problem with the calculation for an arbitrary 
partially ordered set is the same as the problem of calculation of the 
projective dimension of an arbitrary module—there is no general induction 
step that always works as the quotient field results show (global dimension, 
for example, can get in the way). But there is enough information to 
reduce from the case of infinite n to finite n> If the cofinality of (arbitrary 
directed) II^X^ and pd(AJR)=fc<oo, then one can find a submodule 
generated by {xp\p e £} where |fi| = Hk and dkPk(£) is a direct summand of 
dkPk(U). This says pd^x(£))<&, which contradicts the result (for finite 
subscripts) that pd(P_1(fi))=fc + l. The proof of the arbitrary case from 
the linearly ordered one was sketched previously. 

Thus to some extent the things studied were changed, and the changed 
approach shed light on the original topics of interest. The Cartan-Eilenberg 
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approach to projective dimension via Ext was put aside in favor of using 
projective resolutions directly. One of the consequences was some new 
information about Ext and about a family of derived functors which 
seemed different from Ext at first glance, but could be interpreted as an 
appropriate Ext. In the process one obtained the solution of several 
problems connecting cardinality and dimension that had previously been 
solved only in low cardinality cases, plus some weird homological equi­
valences of the continuum hypothesis. 
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