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Wiener's classical tauberian theorem has been extended recently to 
some noncommutative, noncompact groups (see [1], [3], [8] and [10]). 
Our Theorems 1 and 2 are Wiener type theorems, and interest in them led 
to the study of contractible groups. It was rather surprising that all 
contractible Lie-groups are unipotent matrix groups (Theorem 3). 

1. Contracting group extensions. A locally compact group N is 
contractible provided it has enough contractions, i.e., for any compact set 
K a N and any neighborhood W of the identity in N, there is a homeo-
morphic automorphism h e Aut N such that hK c W. The ordered pairs 
(X, W) form a directed set with respect to the relation g , defined by 
{K, W) ^ (K\ W') if and only i f K s X ' and W=> W'. For every 
n — (X, W) choose a contraction hn with hnK c W, then {hn} is a net and 
for any compact set K a N we have limn hnK — {e} (e the neutral 
element of N). 

A locally compact group G is a contracting extension of its normal 
subgroup AT provided the set of restrictions to N of inner automorphisms 
of G contains enough contractions of N. Thus N must be contractible to 
admit contracting extensions. For example, if G ^ Aut TV is a locally 
compact group and contains enough contractions of N, then the semi-
direct product G = G ® N is a contracting extension of TV. 

If G is an extension of TV and G = G/N is the corresponding factor 
group we will usually denote their elements respectively by xy £, x, their 
(left) Haar measures by dx, dÇ,dx, and their moduli by A, ö and A*. We 
suppose that Weil's formula dx = d£, dx holds. 

Let us suppose for a moment that G is separable (i.e. has a countable 
basis of open sets). Then there exists a measurable cross-section cr of G 
with respect to TV (cf. [9]); i.e., there is a measurable function a:G -+ G 
with a(x) 6x = xN and a(è) = e. Suppose further that there is a net {hn} 
of contractions of TV as above, such that limw hn(x) exists for locally almost 
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all x in G (with respect to dx). Let <jn(x) = hn(a(x)). on is then a measurable 
function and p(x) = lim„ an(x) exists locally almost everywhere on G . 
Since G is separable it is metrizable, and the net {hn} can be replaced by a 
sequence. By Egoroff's theorem (cf. [2]) we have the property: 

(E) There is a measurable cross-section G of G with respect to N and a 
measurable function p from G into G; and for each compact set K <= G 
and every a > 0, there is a compact set Kx a K such that dxiKXKJ < s 
and the restrictions <7n | A^ are continuous and converge uniformly to p 
as functions on Kx. 

From now on we will not use the separability of G but we will suppose 
that the property (E) holds. 

Let Ü(G) be the set of all Haar-measurable and absolutely summable 
complex-valued functions on G. With the usual convolution and involu­
tion, I}(G) is an involutive Banach algebra, and L?(G) is its Banach space 
dual. G acts weak-*-continuously on L°(G) by the usual left and right 
translations. Subspaces which are closed under these actions are called 
bi-invariant. 

An involutive Banach algebra B is said to have the Wiener property if 
and only if: 

(W) Every proper closed two-sided ideal / A B is contained in the 
kernel of an irreducible, continuous ^representation of B on some 
Hubert space. 

B is said to be tauberian if and only if it has the property: 
(T) Every proper, closed two-sided ideal I A B is contained in a 

maximal modular two-sided ideal of B. 
We will say that a group G is tauberian (or has property (W)) if L*(G) is 

tauberian (or satisfies (W)). 

THEOREM 1. Let G be a contracting extension of N satisfying (E). If 
G/N satisfies (W) or (T), then so does G. 

The proof of this theorem is based on the following lemma and proposi­
tion. Since the canonical projection p:G -> G is continuous and open 
and the function p is measurable, the composite map r = p op:G -> Gis 
measurable. 

LEMMA 1. Let G be a contracting extension of N satisfying (E), and let M 
be a weak-*-closed, bi-invariant subspace ofL°(G). IfcfreM is left uniformly 
continuous on G then (j) o r e M. 

PROPOSITION 1. Let G and M be as in Lemma 1, and let M0 be the subset 
of all (j) e M which are constant on the cosets with respect to N. Then M0 

is a nontrivial, bi-invariant subspace of M. 

PROPOSITION 1'(DUAL VERSION). Let G be as above. If I is a proper, 
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closed two-sided ideal in l}{G), and if J is the kernel of the morphism 
f -* f' °f &{G) onto I}(G) {where f{x) = \N f{x£) d£), then the closure 
c\{I + J) is a proper, closed, two-sided ideal in Ü{G); equivalently the 
closure cl(J-) of the image of I under the above morphism is a proper closed 
two-sided ideal in 1}{G). 

2. Some extensions of contractible algebras. Let A be an involutive 
Banach algebra on which a locally compact group G acts strongly 
continuously by isometric, involutive, algebra automorphisms Tx, 
x e G. The algebra A is T-contractible provided that there is a net {xn} in 
G such that 

(i) limn{TXna)b exists in A for all a, b e A, and 
(ii) for some ue A the net {TXnu} is an approximating unit for A. 
For example, if N is a contractible group, A = Ü(N) and G = Aut N 

is a locally compact group, then A is T-contractible if we define T by 
{Txƒ)(£) = A{x- x) • f{x- \Q) for x e G, ƒ e A, i e N. In fact TXJ con­
verges to the scalar X{f) = $Nf{Ç)dÇ. Since A contains approximating 
units, A can be isometrically imbedded in its adjoint algebra Ab, which is 
itself an involutive Banach algebra with unit (cf. [7, §3]). 

LEMMA 2. Let A be a T-contractible algebra. The equation 

Rab = limn{TXna)b (a, b e A) 

defines an involutive representation R of A into its adjoint algebra Ab. The 
kernel j = ker R of R is G-invariant, if the xn belong to the center of G. 

Let L = L{G9 A; T) be the generalized L1-algebra with trivial factor 
system (cf. [7, §1]). As a Banach space, L is isomorphic to the projective 
tensor product I}{G) 5) A. The convolution of ƒ, g e L is defined by the 
Bochner integral ƒ * g{x) = J Tyf{xy) • giy'1) dy9 and the involution by 
f*(x) = A{x~1)Tx-if{x~1)*. L can be viewed as an extension of the 
algebra A by the group G (cf. [4]). 

Suppose j = ker R is G-invariant. Let A = A/j be the involutive 
Banach algebra quotient of A by j , and define T on A' by Tx{a + j) = 
{Txa) + j . The canonical projection A -* A' induces an isometric iso­
morphism L/J ^ L = L{G, A ; T) which we denote (par abuse) by R^ 
(cf. [7, §5]). The kernel J of R^ can be identified with Ü{G) (x) j . 

LEMMA 3. Let A be a T-contractible algebra and assume that j = ker R 
is G-invariant. Let J = ker R^ be as above. 

(i) lim„(TXM/)*^ = OforallfeJandgeL,where{Txf){y) = Tx{f{y)). 
(ii) Let pt be an approximating unit of Ll{G); if Ru = id^ for some 

ue A and Pi n = TXn{pt ® u) = pt ® TXnu, then {pUn\ is an approximating 
unit of L, where (i, n) ^ (i', n') iff i ^ i' and n ^ n'. 
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PROPOSITION 2. Let A be a T-contractible algebra and assume that 
j = ker R is G-invariant. If I is a proper, closed, two-sided ideal in 
L = L(G, A; T) then so is the closure of I + J. 

By Proposition 2, L will be wienerian (W) or tauberian (T) if L has the 
respective property. 

THEOREM 2. Let A be a T-contractible algebra. Let R be as in Lemma 1, 
but assume that each Ra is a scalar multiple of the identity operator. Assume 
that j = ker R is G-invariant. If G satisfies (W) or (T) then so does 
L = L(G,A; T). 

The method of proof in this paragraph is essentially the same as in 
[10], whereas the method in §1 is new, and different from the method in 
[3]. 

3. Contractible Lie groups and Lie algebras. A few facts about con-
tractible groups in general are collected in 

PROPOSITION 3. Let G be a nontrivial contractible group. 
(i) G is neither compact nor discrete. 

(ii) If G is locally connected, then also globally. 
(iii) If G is locally simply connected, then also globally. 
(iv) If G has a nontrivial compact subgroup, then it has arbitrarily small 

ones. 
(v) If G has a compact open subset, then G is totally disconnected. 

Let K be a nondiscrete, complete field of characteristic 0, and let 
X -• |A| be a norm ( = valuation) of K. Since K is nondiscrete there are 
nonzero Xne K with limn | AJ = 0. If M c K is (norm-) bounded then the 
diameters of the sets XnM converge to 0. Multiplication by a scalar 
Xn # 0, defines an automorphism of JTs additive group. The additive 
group of K is thus contractible if locally compact. 

Let ^ be a finite-dimensional Lie algebra over K with Lie product 
(x,y) -• [x,y] and norm x -+ \x\ for which |[x,y] | Sj \x\ • \y\. The norm 
\h\ of a Lie homomorphism h of ^ is the norm of h as a linear operator of 
the normed space ^ ; \h\ = sup{|/*x|; \x\ ^ 1}. 

A contraction of the Lie algebra ^ is a Lie automorphism h with 
\h\ < 1. If ^ has one contraction h, then it has enough contractions and 
we call CS contractible'. the powers hn of h map every bounded set eventually 
into any 0-neighborhood of ^, because their norms \hn\ converge to 0. 

PROPOSITION 4. Finite dimensional contractible Lie algebras over K are 
nilpotent. 

EXAMPLES. (1) All freely generated, nilpotent Lie algebras are con­
tractible. 
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(2) All nilpotent Lie algebras of dimension ^ 6 are contractible, but 
some are not freely generated. (This last result is based on the classification 
of these Lie algebras in [11].) 

A unipotent matrix over K is an (upper) triangular matrix of finite order 
with coefficients from K and l's in the main diagonal. A unipotent group 
over K is (up to a global isomorphism) a group of unipotent matrices with 
matrix multiplication as its group operation, which is complete with 
respect to a norm topology on the respective matrix ring. The topology 
of a unipotent group does not depend on the choice of norm because K 
(etc.) is completely metrizable, and Baire's theorem applies. 

PROPOSITION 5. If & is a finite dimensional nilpotent Lie algebra over K 
(not necessarily contractible) then & can be imbedded into an associative 
matrix algebra A over K, such that the power series exp(x) = £ xn/n !, 
as evaluated in A, reduces to a polynomial for all x e <§, and sucKthat the 
global image exp ^ of ^ under exp is a unipotent group. 

The proof of this proposition depends on the theorems of Ado, Lie and 
Campbell-Hausdorff (cf. e.g. [5]). 

THEOREM 3. If G is a contractible Lie group of finite dimension over the 
field R of real numbers or the field Qp ofp-adic numbers, then G is a unipotent 
group. 

In the real case, the proof of Theorem 3 is achieved through Propositions 
6 and 7 below, which in turn depend on classical theorems. In the/?-adic 
case, however, we rely on results from [6], notably the "inversion of the 
Campbell-Hausdorff formula" [ibid., IV, 3.2.3]. 

PROPOSITION 6. The Lie algebra & of a contractible Lie group G over R 
is contractible and thus nilpotent. 

PROPOSITION 7. If G is a connected and simply connected nilpotent Lie 
group over R (not necessarily contractible), then G is a unipotent group. 

The author would like to thank Horst Leptin for his encouragement 
and advice. 
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