
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 6, November 1973 

A FATOU THEOREM FOR THE GENERAL ONE-
DIMENSIONAL PARABOLIC EQUATION1 

BY STANLEY SAWYER 

Communicated by H. Kersten, April 21, 1973 

1. Introduction. Let R be a finite or infinite one-dimensional open 
interval. Our main purpose here is to characterize all positive weak 
solutions of the equation 

(1.1) du/dt = 9u = a{x)uxx + b{x)ux + c{x)u in R x (0, T) 

where T ^ oo. Here a(x) ^ 0, c(x) S M,2 l/«(x), b(x)/a(x) and c(x)/a(x) 
are locally integrable in R, but otherwise the coefficients are unrestricted. 
The results below extend characterizations of Widder ([17], [18]) for 
positive solutions of the heat equation (see §1.1). In particular, we find 
that all positive solutions of (1.1) are of the form 

(1.2) w(x, t) = /?(/, x, y)F(dy), 
R 

where p(t, x,y) is the fundamental solution of (1.1), if and only if the 
Green's function of (1.1) is not of trace class at either endpoint of JR. 
While these results are one-dimensional, they do have the advantage that 
they are complete, and suggest possible generalizations in higher dimen­
sions. Proofs will appear elsewhere. 

Equation (1.1) can always be transformed into a similar equation with 
c(x) = 0; assume for the moment c = 0 in (1.1). Then by a simple change 
of variables we can write (1.1) in "Feller form" 

(1.3) du/dt = 9u = (d/dm{x))(du/ds{x)) in R x (0, T) 

where m(x) and s(x) are increasing; we can also consider equation (1.3) for 
an arbitrary strictly increasing continuous function s(x) (a "scale") and 
Borel measure m(dx) which is positive on open sets in R. Then Sf becomes 
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the infinitesimal generator of the general nonsingular diffusion process rt 

in R which terminates at the endpoints ([3], [5], [10], [12]). Indeed, in 
terms of rt, u(x, i) turns out to be a weak solution of (1.3) iff 

(1.4) u(rt, T - t) is a local martingale, 0 < t < T. 

In this context, the problem is to determine when all local martingales of 
the form (1.4) are actually given by (1.2), and to classify the ones that are 
not. Such representation theorems have had applications in proving 
theorems of iterated logarithm type (see §1.1 and [13]-[15]). Particularly 
we would like to thank Professor Siegmund for access to the manuscript 
[15] and for many helpful conversations. 

The general positive solution of (1.3) will depend on the behavior of 3f 
near the endpoints; we use s(x) and m(dx) to classify each endpoint of R 
into one of four types (see §2). Since the form of (1.1) or (1.3) is invariant 
under diffeomorphisms of R, it is sufficient to assume R = (0, 1). 

We remark [10, §4.11] that equation (1.3) (with zero boundary condi­
tions where appropriate) always has a symmetric fundamental solution 
p(U x, y) with respect to the measure m(dx). Then 

THEOREM 1. Let u(x, t) be a nonnegative weak solution (see §2 for exact 
definitions) of (1.3) in R x (0, T). Then, there exist measures c(ds) ^ 0, 
c(ds) §: 0 on [0, T) and F(dy) §; 0 on R such that 

g0(t — s, x)c(ds) 

(1.5) 

u(x, t) = 

+ qY(t - s, x)c(ds) + p(t, x, y)F(dy) 
J O - JR 

where: 

(i) ƒƒ 0 is an accessible boundary (see §2), 

P(t, a,x) dp , ^ x 

q0(t9 x) = hm ; y ; = -f (t, o, X), 
a-+o s(a) — s(0) ds 

the limit existing weakly in t (i.e., the indefinite integrals converge). Similarly, 
if\ is accessible, qx(t, x) = —(dp/ds)(t, 1, x). 

(ii) If 0 is an entrance boundary, q0(t,x) = p(t, 0 + ,x), the limit 
existing as in (i), and qx(t, x) = p(t, l — ,x)ifl is entrance. 

(iii) In the remaining cases, i.e. if 0 is an inaccessible exit (I.E.) or 
natural boundary, no term for q0(t,x) appears in (1.5), and the kernel 
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q0(t, x) of (i) (respectively (ii) ifO is natural) exists and is identically zero. 

Thus all nonnegative solutions of (1.3) are of the form (1.2) iff both 
boundaries are natural or I.E. The boundary measures in (1.5) (when 
they exist) can be recovered from u(x, t) by weak limits; in particular, if 
these measures have bounded densities, u(x, t) itself is bounded iff there is 
no contribution in (1.5) from an entrance boundary. 

Now, consider (1.1) for arbitrary c(x) S 0, or, more generally, 

u(y)k(dy) 
3 rf f du 
dt * dm\ds 

where k(dx) is a nonnegative Borel measure in R (see [10, Chapter 4]). 
Thus @tu = $)u — c(x)u if k(dx) = c(x)m{dx). Let p(t, x,y) be the funda­
mental solution of (1.6) with respect to m(dx) as before, and let /z+(x)î, 
h„(x)l be two linearly independent positive solutions of 

(1.7) ® i M * ) = ® i M * ) = 0. 

Such functions can be defined whenever k(R) > 0. Then 

THEOREM 2. Let u(x, t) be a nonnegative weak solution in R x (0, T) of 
equation (1.6). Then, u(x, t) has a representation of the form (1.5), where 
q0{t, x)£0iff 

ri/2 

(1.8) h+(x)h_(x)m(dx) < oo. 
Jo 

If (1.8) converges, q0(t, x) = lima_0 p(t, a, x)/h+(a) as in Theorem 1, and 
ƒ{, u(x, s) ds = 0(h_(x)) for small x for any solution u ^ 0. The integral 
(1.8) always converges if 0 is accessible or entrance for 3). The same results 
hold at 1 mutatis mutandum. 

EXAMPLES. (1) If QJ^U = uxx - (l2/x2)u in (0, oo), then h+(x) = x4, 
h_(x) = 1/x3, m(dx) = dx, and (1.8) converges at 0. Thus q0(t,x) = 
lima_+0 p(t, a, x)/a4, and \t

0u(x,s)ds = 0(l/x3) for a general positive 
solution of (1.6). 

(2) Let Q)xu — uxx — xau in (0, oo). Then oo is a natural boundary for 
3)u = uxx, but (1.8) converges at oo for all a > 2. Thus, if a > 2, the 
general positive solution of (1.6) has a boundary term at oo, and the 
Green's function of (1.6) is a trace class operator in L2(R, dx). Inciden­
tally, 3fY is of limit point type at oo in the sense of Weyl for all a > 0. 

REMARK. If k(dx) = c(x)m(dx), where 0 S c(x) S M, the integral 
(1.8) converges iff 0 is accessible or entrance for 2. 

1.1 The first results of this type were due to Widder [17], [18] and 



1973] A FATOU THEOREM 1213 

Hartman and Wintner [8], who obtained Theorem 1 for positive solutions 
of the heat equation ut = uxx for R = ( — oo, oo), (0, oo), and (a, b) for 
finite a, b. For this equation, the boundaries ± oo are natural and finite 
boundaries are accessible. Later authors ([1], [2], [6], [16]) generalized 
the heat equation to (1.1) with various conditions on a(x), b(x) and c(x) 
(often in higher dimensions as well) but always under conditions that 
exclude boundary terms at ± oo. In a different vein is a recent paper of 
Robbins and Siegmund [15], who use probabilistic arguments to find all 
positive solutions of 

(1.9) du/dt = uxx + 2ujx in(0, oo) x (0, T). 

Here oo is an I.E., but now 0 is an entrance boundary. This appears to 
be the first example of a Fatou representation (1.5) with a term from an 
inaccessible boundary, although the possibility is suggested by earlier 
work of Feller [4] and Hille [9] . Robbins and Siegmund were interested 
in positive solutions of (1.9) which are constant along certain curves 
x = x(t) ; these can be interpreted as the probability that three-dimensional 
Brownian motion ever escapes (or alternately is overtaken by) an 
expanding sphere of radius r = x(t). The unbounded term in (1.5) yields a 
law of iterated logarithm type for the minimum modulus of three-dimen­
sional Brownian motion. Using Theorem 1, these arguments can be 
extended to Brownian motion in dimensions other than three. 

The comparison of Widder's results and the general solution of (1.9) 
led to the conjecture of Theorem 1. In the special case w(x, t) = ektg(x) 
(where 3) g — Xg), this was verified byTz. L. Lai [11] by methods different 
from ours. He also obtained Theorem 1 under various specific growth 
conditions at the boundaries. 

2. Definitions. For closed subintervals [a, b] of R, set 
poo 

(2.1) gjx, y) = pjt, x, y) du 
Jo 

where pah{t, x, y) is the fundamental solution of (1.3) or (1.6) in (a, b) with 
zero boundary conditions. We say that u(x, t) is a weak solution of (1.3) in 
R x (0, T), if u(x, t) is locally integrable in R x (0, T) and satisfies 

f(2 Çb 
u{x, 6) dO = - gab(x, y)(u(y, t2) - u(y, tj) m{dy) 

(2.2) + 
s(b) — s(x) 

s(b) — s(a) 

'*2 

u{a, 6) d6 

— u(b, i 
s(x) - s(a, . ., _. __ 

+ -77^ ~ u(b, 6) d6 
s(b) — s(c^ ' 
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for a.e. a, x9 b in R with a < x < b, and a.e. tu t2 in (0, T). To define a 
weak solution of (1.6), we replace the coefficients of the last two integrals 
in (2.2) by appropriate linear combinations of the solutions h±(x) of (1.7). 
Using a result of Lai [11], one can show that all weak solutions are 
actually continuous after modification on a null set in R x (0, T). 

If 1̂ (0)1 < oo in (1.3), i.e. if s(x) is bounded from below in R, we say that 
0 is an accessible boundary if I = jj/2(s(x) — 5(0)) m(dx) < oo and is an 
inaccessible exit (I.E.) if 7 = oo. If s'(O) = — oo, 0 is entrance if ƒ = 
j j / 2 \s(x)\ m(dx) < oo and a natural boundary if J = oo. See [3], [10], or 
[12] for the meaning of these terms in terms of the behavior of rt. In 
particular, 0 is accessible iff rt can reach 0 in finite time with positive 
probability. An entrance boundary is inaccessible, although rt can enter 
R at 0. If 0 is accessible and T0 = inf{r.rt = 0}, (1.5) for u(x, t) = 
Prob(T0 S 11 r0 = x) shows that q0(t, x) = Prob(T0 e dt)/dt. 

REFERENCES 

1. D. G. Aronson, Uniqueness of positive weak solutions of second order parabolic 
equations, Ann. Polon. Math. 16 (1965), 285-303. MR 31 #506. 

2. D. G. Aronson and P. Besala, Uniqueness of positive solutions of parabolic equations 
with unbounded coefficients, Colloq. Math. 18 (1967), 125-135. MR 36 #2971. 

3. L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968, Chap. 16. MR 37 
#4841. 

4. W. Feller, The parabolic differential equations and the associated semi-group of trans­
formations, Ann. of Math. (2) 55 (1952), 468-519. MR 13, 948. 

5. , On second order differential operators, Ann. of Math. (2) 61 (1955), 90-105. 
MR 16, 824. 

6. A. Friedman, On the uniqueness of the Cauchy problem for parabolic equations, Amer. 
J. Math. 81 (1959), 503-511. MR 21 #3657. 

7. , Uniqueness for the Cauchy problem for degenerate parabolic equations, Pacific 
J. Math, (to appear). 

8. P. Hartman and A. Wintner, On the solutions of the equation of heat conduction, Amer. 
J. Math. 72 (1950), 367-395. MR 12, 104. 

9. E. Hille, Les probabilités continues en chaînes, C. R. Acad. Sci. Paris 230 (1950), 34-35. 
MR 11, 256. 

10. K. Ito and H. P. McKean, Jr., Diffusion processes and their sample paths, Die 
Grundlehren der math. Wissenchaften, Band 125, Academic Press, New York; Springer-
Verlag, Berlin and New York, 1965. MR 33 #8031. 

11. Tz. L. Lai, Space-time processes, parabolic functions and one-dimensional diffusions, 
Trans. Amer. Math. Soc. 175 (1973), 409-438. 

12. P. Mandl, Analytical treatment of one-dimensional Markov processes, Die Grundlehren 
der math. Wissenschaften, Band 151, Academia, Prague; Springer-Verlag, New York, 
1968. MR 40 #930. 

13. H. Robbins and D. Siegmund, Boundary crossing probabilities for the Wiener process 
and sample sums, Ann. Math. Statist. 41 (1970), 1410-1429. MR 43 #2796. 

14. ? Qn the iaw 0f the iterated logarithm for maxima and minima, Proc. VI Berkeley 
Sympos. (1970/71), vol. 3, pp. 51-70. 



1973] A FATOU THEOREM 1215 

15. H. Robbins and D. Siegmund, Statistical tests of power one and the integral representa­
tion of solutions of certain partial differential equations, Bull. Inst. Math. Acad. Sinica 1 
(1973), 93-120. 

16. J. B. Serrin, A uniqueness theorem for a parabolic equation, Bull. Amer. Math. Soc. 
60 (1954), 344 (Abstract). 

17. D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 
(1944), 85-95. MR 5, 203. 

18. , Positive temperatures on a semi-infinite rod, Trans. Amer. Math. Soc. 75 
(1953), 510-525. MR 15, 322. 

DEPARTMENT OF MATHEMATICS, YESHIVA UNIVERSITY, NEW YORK, NEW YORK 10033 


