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In a series of papers [ l ] - [4] , E. Cartan developed the theory of iso­
parametric families of hypersurfaces and proposed a number of problems. 
The purpose of the present note is to announce the following three results. 
First, we construct a series of isoparametric families of hypersurfaces 
Mr

2w in S2w + 1, n ^ 2, thus providing an affirmative answer to one of 
Cartan's problems. Second, we show that each focal variety belonging to 
an isoparametric family M" in Sn+* admits a global submanifold structure 
if M" consists of compact hypersurfaces. Finally, we prove that each 
focal variety of M" is a minimal submanifold in Sn + *. 

In §1, we recall, very briefly, some basic facts from Cartan's work. In 
§2, we give the construction of isoparametric families M2n in S2n+i. 
In §3 we discuss focal varieties, in particular, from a global point of view. In 
§4 we deal with minimality of focal varieties. The details will appear 
elsewhere together with a systematic account of Cartan's theory of 
isoparametric families. 

1. Isoparametric family of hypersurfaces. A connected hypersurface 
Mn in the sphere Sn + 1 (unit hypersphere in Euclidean space Rn + 2) is said 
to have constant principal curvatures if there are distinct constants 
al9 . . . , ap which, for a suitable choice of a unit normal vector field £, 
represent all the distinct principal curvatures at every point. In this case, 
the multiplicity vt of each a{ remains the same throughout M. Of course, 
n = Yïi=i vi- Let M" be a family of parallel hypersurfaces obtained by 
moving each point of Mn by distance t along the geodesic in the direction 
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of £. Then, for each r, M" has constant principal curvatures cot(of — t), 
1 ^ i ^ p, where 0; is the angle between — % and 7c such that cot 0t = at, 
1 ^ i ^ p. The family M" is called an isoparametric family of hyper-
surfaces. We content ourselves here with local considerations. If Mn is 
compact, then there is some c > 0 such that, for each r, |t| < c, M" is a 
nonsingular hypersurface of Sn + 1. Even locally, however, how big t can 
be is a question of focal point which we discuss in §3. 

For a hypersurface Mn with distinct constant principal curvatures 
au . . . , ap with multiplicities v1? . . . , vp in Sn+1 there is a basic identity 
proved by Cartan: 

(*) For each i, £ f c^ vfc(l + a,ûk)/(** - ak) = 0. 
Cartan notes that it is of interest to discover a geometric proof of this 

identity. We shall later find a geometric interpretation of (*). 
One of the problems posed by Cartan is: Does there exist a hypersurface 

M" in SM+1 with more than three distinct constant principal curvatures, 
not all of the same multiplicity? We answer this question affirmatively 
in §2. 

In Cartan's theory, isoparametric families of hypersurfaces are closely 
related to families of level hypersurfaces for a certain class of functions on 
S M + 1. F o r a differentiable function F on Sn+1 (or on an open subset of 
5M + 1),let 

AXF = ||dF||2 and A2F = Laplacian of F, 

and consider the following condition: 
(**) AXF and A2F are functions of F. 

Under this condition, the level hypersurface 

Mn
c = {xe Sn + i; F{x) = c, A.Fix) * 0} 

is a (nonsingular) hypersurface with constant principal curvatures, if it is 
nonempty. By assuming AjF = 1, the family of level hypersurfaces 
M" = {x e Sn + 1; F(x) = t} constitutes an isoparametric family for a 
suitable range of t. Cartan showed that if Mn has p distinct principal 
curvatures with the same multiplicity v (so that n = pv), then it can be 
obtained as the level hypersurface F = cos pt, where F is a harmonic 
homogeneous polynomial of degree p (restricted to Sn+1). 

2. A series of isoparametric families Mfn in S2n+1. Let R n + i be the 
standard (n + l)-dimensional real vector space with the usual inner 
product <x, y}. If we regard the (n + l)-dimensional complex vector 
space Cn + 1 as a real vector space, t hen we have Cn+1 = R n + 1 + iRn+1. 
By wri t ing z, w e Cn + 1 in the form z = x + iy, w = u + iv, the real 
inner p roduc t in Cw + 1 is given by 

<x + iy, u + iv} = <x, w> + <y, v } . 
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LetS2w + 1 = {zeCn+1; \\z\\ = 1} and consider a function 

F(z) = (||x||2 - \\y\\2)2 + 4<x,j;>2 forz = x + iy 

on S2n + 1. The function F satisfies condition (**): 

A,F = 16F(1 - F) and A2F = 16(1 - 2F). 

For each t, 0 < t < n/4, let M2n = {z e S2n + 1; F(z) = cos2 2t\. 
We have then 

THEOREM 1. M2n, 0 < t < n/4, farms an isoparametric family of 
hypersurfaces in S2n + 1. For a fixed t, the hypersurface M2n has the following 
principal curvatures: 

(1 + sin 2t)/cos It, ( - 1 + sin 2t)/cos It of multiplicity 1; 

tan t, —cot t of multiplicity n — 1. 

Moreover, M2n is the image of the imbedding of S1 x Sn + la -> S2n + 1, 
where Sn + 12 is the Stiefel manifold of all orthonormal pairs of vectors 
x, y e Rn + 1, given by 

(ew, (x, y)) -• eI,0/2(cos tx + i sin ty). 

REMARK 1. For n = 2, the isoparametric family Mr
4 in S5 appears as 

one of the examples studied by Cartan. For n ^ 3, Mfn gives an 
affirmative answer to the problem quoted in §1. 

REMARK 2. R. Takagi and T. Takahashi [6] answered the same 
question by determining homogeneous hypersurfaces in Sn (which, 
obviously, have constant principal curvatures). Our hypersurface in 
Theorem 1 corresponds to the fifth example on their Table II, for which 
they have not given the actual values of principal curvatures. On the 
other hand, they have found other examples which answer the question of 
Cartan. 

3. Focal varieties. For a hypersurface W in Sn + 1 , the notion of focal 
point can be defined as follows. Let £ be a field of unit normal vectors. 
A point y0 in Sn+1 is a focal point of (M, x0), where x0eM, if 
y0 = cos t0x0 + sin t0ÇXo for some t0 and if the differential of the mapping 
(x, t) -> y = cos tx + sin tÇx is singular at (x0, t0). A point y0 is called a 
focal point of M if it is a focal point of (M, x0) for some x0 e M. 

It is easily seen that y0 = cos t0x0 + sin £0<î;Xo is a focal point of 
(Mw, x0) if and only if cot t0 is one of the principal curvatures (eigenvalues 
of the second fundamental form A corresponding to £). 

Now assume that M" has distinct constant principal curvatures 
au . . . , ap of multiplicities vl5 . . . , vp. If we let 

T.(x) = {X e Tx(M
n); AX = atX}, x e M", 
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then we obtain distributions Tl9 . . . , Tp of dimensions vl9 . . . , vp on M. 
It can be shown easily that each distribution is integrable and the maximal 
integral manifold Mt(x) of Tt through x is totally geodesic in Mn and 
umbilical as a submanifold of Sn + 1. (Thus, if Mn is connected and 
compact, Mt(x) is a vrdimensional small sphere of Sn + 1.) 

For each i, 1 ^ i ^ p, we define a differentiable mapping f of Mn into 
Sn + 1 by f(x) = cos ö̂ x + sin 0 ^ , where cot öf = at as before. The 
differential off at x has Tf(x) as the null space and is injective on the sum 
Yjk*i Tk(x)- This implies that for each point x there is a local coordinate 
system {V, . . . , un} with origin x such that f is a one-to-one immersion 
of the slice u1 = • • • = uVi = 0 into S" + 1 , the image being in ft(M

n). 
Thus we may consider fi(Mn) as a submanifold of dimension n — vt in a 
neighborhood of f{x). We call /;(MW) a /oca/ variety of M" for each i. If Mw 

is compact, we can indeed give a global submanifold structure to each 
focal variety. 

THEOREM 2. Let Mn be a connected compact hypersurface in Sn+l with 
constant principal curvatures. Each focal variety ft{Mn) is a submanifold of 
Sn+l in the following sense. There exists an (n — v^-dimensional differenti­
able manifold Vt, a differentiable mapping ni of M onto Vt, and a differentiable 
imbedding gt of Vt into Sn+1 such that f = gt o ni9 in particular, ft(M) = 

gm. 
For the proof, we make use of the result of Palais [5] concerning the 

space of leaves of a regular foliation. 

4. Minimality of focal varieties. We have 

THEOREM 3. Let Mn be as in Theorem 2. Each focal variety is a minimal 
submanifold of Sn + 1. 

The question of minimality seems to have escaped the attention of 
Cartan, although examples of focal varieties which appear in his papers 
include such notable minimal submanifolds as the Veronese surface in S4. 

Theorem 3 can be stated as a local result without assuming compactness 
of Mn. Since minimality is a local condition, the proof is carried out by 
local computations of the traces of the second fundamental forms of 
fi(Mn). The tangent space to fi(Mn) at ^(x) can be identified with 
Zk^i Tk(x) through Euclidean parallelism in Rn + 2. The normal space to 
fi{Mn) at f(x) is given as follows. First, the tangent vector rj of the geodesic 
cos tx + sin t£x at t = 0h namely, rj = —sin 6tx + cos 0 ^ , is in the 
normal space. Second, every Z e Tf(x), can be considered (through parallel 
translation in Rn + 2) as a normal vector to fi(Mn). The vectors rj and Z, 
Z G 7](x), span the normal space. 
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It is not difficult to show that the trace of the second fundamental form 
of fi(Mn) corresponding to every Z is 0. On the other hand, computation 
shows that the trace of the second fundamental form of /j(M") corre­
sponding to rj turns out to be precisely the sum 

1 + afli 
^ k a - a 
k*i ui ak 

in the basic identity (*) of Cartan. We have thus a proof of Theorem 3 as 
well as a geometric interpretation of (*). 
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