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ON THE ARITHMETIC OF TUBE DOMAINS 
(BLOWING-UP OF THE POINT AT INFINITY) 

BY I. SATAKE 

The purpose of this talk is to construct, in a certain canonical manner, a 
"blow-up" of the isolated singularity which appears as a point at infinity 
of an arithmetic quotient of a symmetric tube domain. Similar (but slightly 
different) blowing-ups have already appeared in some special cases in the 
works of Pyatetskii-Shapiro, Igusa [4] (Siegel modular case) and 
Hirzebruch [3] (Hubert modular case). It should be possible to extend our 
construction to the case of general symmetric domains via their realiza
tions as "Siegel domains of the third kind" (cf. [ I ] , [6], [7b]). But, for the 
sake of simplicity, we shall here restrict ourselves to the simplest case. 

1. Let U be an «-dimensional real vector space endowed with a 
(positive-definite) inner product < > and Q a (nonempty) open convex 
cone in U with its vertex at the origin of U. We assume that Q does not 
contain any straight line (not necessarily passing through the origin). 
Let G0 be the identity connected component of the (linear) automorphism 
group 

Aut(Q) = {g e GL(U) \ gQ = Q}. 

In the following, we assume Q to be "homogeneous" and "self-dual"; 
these mean that G0 is transitive on Q and that Q coincides with its dual 

Q* = {u e U | <w, «'> > 0 for all u' e Q - {0}}, 

where Q denotes the closure of Q. It is known [9] that the latter condition 
is equivalent to saying that 'G0 = G0, t denoting the adjoint with respect 
to the inner product < >, and this implies that G0 is the identity connected 
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component of a reductive (real) algebraic group G. We fix a lattice M in 
U and assume that Q is "rational" with respect to M, meaning that when 
we express G as a matrix group with respect to a basis of M, G is defined 
by polynomial equations with coefficients in Q (the field of rational 
numbers). Under this assumption the inner product in U, for which Q is 
self-dual, can also be chosen to be rational, i.e. in such a way that the dual 
lattice M* of M is commensurable with M itself. Finally, we assume that 
Q is "Q-anisotropic". This means that there are no rational points on the 
boundary of Q except the origin. It is known [2] that this condition is 
equivalent to saying that the Q-rank of G is = 1. This implies that the 
maximal Q-split torus in G is given by the group of dilatations u i-> hi 
(ÀeRx) and the semisimple part of G is Ô-simple a n d Q-compact. A 
complete list of self-dual cones satisfying these conditions is available 
from the classification theory of simple algebraic groups. 

EXAMPLE. Let U = Rn, M = Z", and let S = (atj) be an n x n non-

singular rational symmetric matrix with signature (1, n — 1) such that 
a n > 0 and the corresponding quadratic form S(x) = *xSx (x e U) does 
not express zero nontrivially in Qn. (Hence n ^ 4.) Then, the quadratic 
cone 

Q = {x = (Xi) e Rn | S(x) > 0, x1 > 0} 

is self-dual with respect to the inner product <x, y} = fxS0y where S0 is 
an« x «positive-definite symmetric rational matrix such that (SSö1)2 = 
1, and all the above conditions are satisfied for this setting. 

2. Let Q be an open convex cone in U satisfying all the conditions 
mentioned in §1. Let Uc be the complexification of U and consider the 
tube domain U + iQin £/c, which is an (unbounded) symmetric domain. 
The semidirect product G0 = G0 - £/then acts transitively on U + iQ by 

g = gu1 :u h-> g(u + wj (g e G0, ux e U). 

Let T be an "arithmetic" subgroup of G0 leaving M fixed, i.e. a subgroup 
of finite index of {g e G0\ gM = M}. Then the semidirect product 
f = r • M acts on U + iQ properly discontinuously. When T has no 
element of finite order other than the identity element, the quotient space 
t\(U + iQ) is a (nonsingular) complex manifold. 

From the theory of compactification [1], [6], [7a] it is known that the 
quotient space t\(U + iQ) can be completed (locally) to a normal 
analytic space T\(U + iQ) u {oo} by adjoining a single point at infinity, 
which turns out to be a singular point except for some lower dimensional 
cases. It is an important problem in the theory of automorphic functions 
to construct a (canonical) desingularization, or at least a nice blow-up, 
of the singularities of this kind (locally and globally). A possible approach 
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to this problem will consist of studying the ring of automorphic forms 
and then performing the (iterated) "monoidal transformation" with 
respect to the ideal of cusp forms, as was done by Igusa [4] for the case of 
(congruence) Siegel modular groups. In this lecture we shall present a 
more direct geometric approach to the problem. 

3. For m e M*, we put 

ÇJu) = exp(27iï<m, M » (u e Uc) 

where < > denotes the natural (C-bilinear) extension of the given inner 
product in U. For convenience, we fix a numbering of the points in 
Q n M*: 

QnM* = {mU)\j = 1 , 2 , . . . } 

and write ÇU) for ÇmU). Consider a map (f> of U + iü into an infinite-
dimensional projective space Pœ(C) defined by 

(1) <Ku) = ( . . . , CU)(u),...). 

Clearly this mapping gives rise to an injection of the quotient space 
(U + fQ)/Minto P^iQ. Our first aim is to determine the structure of the 
set of limit points at infinity obtained from this imbedding. Since P^iC) is 
not compact (not even locally compact), we have to define such limit 
points in some restricted sense. 

For that purpose, let 

"/ = {Xui | X > 0} (u1 e Q) 

be a half-line contained in Q. A point m{jl) is called l-minimal if <m0), wx> 
(m0) E Q n M*) attains its minimum at m0) = m0l). Let <r(/) be the convex 
closure of the set of all /-minimal elements in Q n M*. Then a(l) is a 
finite cell (= convex polygon) and all points in a(l) n M* are /-minimal. 
We denote by Z = Z(Q, M*) the collection of all cells a = o(l) obtained in 
this way for / c= Q, and by |Z| the set-theoretical union of all d e l . Then, 
from the assumptions on ft, it is easy to see that |Z| coincides with the 
boundary of the convex closure of Q n M*, and E is a locally finite cell 
complex such that every cell is a face of some (n — l)-dimensional cell. 
|S| is called (in Japanese) a "Hariko" of Q n M*.2 

To each a on the Hariko, we want to attach a certain projective variety. 
We put J{(T) = {j\mU)e<r}. 

LEMMA 1. Suppose we have a linear relation 

(2) X cjmU) = °-
jeJ(a) 

2 "Hariko" is a name of a Japanese handicraft to produce various figures (such as dolls, 
pets, tigers) by pasting pieces of paper. 
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Then we have 

(3) X cj = 0. 
J€J(a) 

In fact, let dim a = r and let {m(i°\ . . . , m{ir)} be a maximal set of 
independent points in a n M*. Then, since the affine subspace spanned 
by a does not contain the origin of U, the vectors m(i°\ . . . , m(lr) are 
linearly independent. Hence every mU) e a n M* can be expressed 
uniquely in the form 

mU) = I ajkm(ik) 

k=0 

with aj7c G R and ]T£=0 ajk = 1. Hence the relation (2) implies ]T .e c ^ = 

0, for 0 ^ fc g r, whence we get (3). 

In the relation (2) we may assume Cj e Z, since m0)'s belong to a lattice. 
Then we can consider the corresponding monomial equation in the 
indeterminates <̂  (j e J(a)) which is homogeneous by virtue of (3): 

(2') r u ? = n<^', 
+ 

where f\+ (resp. Y[-) denotes the product taken over all j e J(a) such 
that Cj > 0 (resp. Cj < 0). We first define an affine variety Aa c PJ<C) as 
the set of all (^) e P^C) satisfying the condition 
(4) {j = 0 o j M f f ) 

along with all the equations (2') obtained from the integral linear relations 
(2). We also denote by M{G) the submodule of M* generated by 
{mu,) - mU)\j\f eJ(<j)} and by Hom(M(<r), C x ) the (multiplicative) 
group of all homomorphisms Ö : M(a) -• Cx, where C x is the (multi
plicative) group of all nonzero complex numbers. Then we have 

LEMMA 2. Aa » Hom(M(<x), C x ) » (Cx) r where r = dim a. 

In fact, every m e M(a) can be written in the form 

(5) m = £ b,.(m0) - m(jo)) 
Je./(<T) 

with bj G Z, where7o is a fixed element in 7(cr). Given x = (^) e A0, we set 

(5') öx(m) = fi (WJ-
jeJ(a) 

Then, by virtue of (2'), 6x{m) is well-defined though the expression (5) may 
not be unique. Clearly, 9X e Hom(M(<r), C x ) and the correspondence 
x H* 8X is continuous. To show that this mapping is actually bijective, 
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take a basis (m1, . . . , mr) of M(a) and write 

mi = £ btfirf* - m°'0>) (1 | i ^ r), 
je Ma) 

(6) 
' mO) _ mOo) = £ a . t m / t (/e7(cr)), 

fc=l 

where 6y , ajfe e Z, and a^'s are uniquely determined. Given 6 e 
Hom(M(er), C x ) , put xö = (^), where 

([OW fovjeJia), 

.0 for j$J{o). 

Then it is immediate that x0 G ̂ ff. From (6) one has 

mU) ___ m(io) = £ £ ajkbkr(m
u,) - m°'o)), 

fc = l j'eJ(<r) 

so that by (2') 

ty«/o = n n (Zf/tjo)ajkbkr = h o w 
k = l j'eJ(o) k = l 

for j G J(cr), i.e. x(6x) = x. Also, from (6) one has 

X bijCijk = <5ifc (Kronecker's delta), 
JeJ(a) 

whence we obtain 9{Xe) = 6. Thus the correspondences x t-> 6X and 
0 H X 9 are mutually inverse, and the correspondences 

x ^ 0X i-> ( 0 ^ ) , . . . , 0^mr)) 

give the homeomorphisms of the lemma. 

4. Next, let P(o) be a projective algebraic set in PJ^C) defined by the 
same set of equations (2'), but replacing <=> by <= in the condition (4). Then 
we have 

LEMMA 3. P(o) = \JT<tr Ar9 where x -< o means that x is a face of a. 

To prove Ax a P(a) for x -< a, it suffices to show that all the equations 
(2') former hold> for (£,.) G AX. If c, = 0 for all j $ J(x), this is trivial. Let 
x = cr(/), UX G / c Q, ux ^ 0, and let ^ G J(T). Then, from the relations 
(2) and (3), one has 

£ Cj(mU) - m{h\ uxy = 0, 
JeJ(<x) 

where <m(j) - m(jl), wr> ^ 0 for ally G /(a) and the equality sign holds if 
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and only if j e J(x). Hence, if there exists ƒ ^ J(x) with Cj ̂  0, then there 
also exists ƒ $ J{x) with cfy < 0. Therefore, in this case, the equation (2') 
holds in the form 0 = 0. 

Next, let (£?) e P(G). We put J0 = {j G J{G) \ $ ^ 0} and let T0 be the 
convex closure of {mU) \ j e J0}. Then from the equations (2') we can infer 
that T0 satisfies the following properties: 

(i) mU) G aff(T0) n G =>j e J0, where afT(T0) denotes the affine space 
spanned by T0 . 

(ii) If T -< a and if the interior oft intersects with T0 , then T a T0 . 
For instance, (ii) can be proved as follows. Let {m(Jl), . . . , mijt)} be the 

set of all vertices of T. Then, under the said assumption, comparing two 
baricentric expressions of a point in the intersection, one obtains an 
integral linear relation of the form 

t 

£ CjmU) = £ c'km
Uk) 

je Jo fc = 1 

with Cj = 0 (J e J o) and c'h > 0(1 g* k ^ t). Hence by (2') one has 

je Jo fc = l 

where the left-hand side is ^ 0 , so that one also has £°k ^ 0 for all 
1 = k = t, i.Q.Ji, . . . Jt e J0. Thus T c: T0 . 

From the properties (i), (ii), we can conclude immediately that T0 •< a 
and J0 = J(T0). Then clearly (£°) G AXO. This completes the proof. 

From Lemmas 2 and 3, we see that P(<r) coincides with the (topological) 
closure of Aa and hence is an r-dimensional projective variety. Moreover 
P(o) is rational, for, in the notation of the proof of Lemma 2, the function 
field of P(o) is a purely transcendental extension of C generated by 
0im ;)( l ^i^r). 

REMARK. Through the isomorphism of Lemma 2, the torus group 
(Cx)r acts on Aa, and it is not difficult to see that this action can naturally 
be extended to JP(cr). Thus (Cx) r -> P{o) is an "equivariant projective 
imbedding of tori" in the sense of Mumford [5] except that P(a) may 
not be normal. 

5. The above construction of the varieties Aa and P(o) can be extended 
to the case of an arbitrary convex polygon G in U spanned by finitely 
many lattice points, if we take up a priori only those linear relations (2) 
satisfying (3), which may be called "affine" relations. Then all the above 
results (except Lemma 1) remain true. It is an interesting combinatorial 
question to find, for a given G, simple "fundamental relations" from 
among these integral affine relations (2). Especially, one may ask whether 
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or not the binomial relations of the form 

mUo) + mij2) = m(jl) + m(i3) U0J1J2J3 e J(<r)) 

are fundamental. When this condition is satisfied, we call a "good"; in 
that case, P(o) is defined by a set of quadratic equations of the form 
£jo€j2 = €ji£j3- Clearly all 1-dimensional polygons are "good". Yama-
guchi [10] proved that any 2-dimensional convex polygon spanned by 
lattice points is "good" except for the case of triangles such that there 
exists at least one lattice point in their interior but there exist no lattice 
points on their sides except vertices (Figure 1). 

FIGURE 1 

For such exceptional triangles, a set of fundamental relations is obtained 
by adding certain trinomial affine relations to the binomial ones. Further
more, he showed that for n = 3 all cells a on the Hariko are "good". 

6. Now let u0 e Uc, aY e Q and put 

u(X) = u0 + iXul9 ÀeR. 

Then, for a sufficiently large A, we have w(A) e U + id. It is clear that one 
has Ç(j)(n(A)) -> 0 (A -> 00) for ally and that, iïj\ e J(o) (a = <r(/), ux e /), 
then 

(7) ,-(«(A))/C-(«(A)){= W W f O T ' 6 • * * 
l ->0 for J$J(<T). 

Therefore we have limA_00 (/>(u(2)) e Aa, and actually, by Lemma 2, it is 
easy to see that all points in Aa are obtained as limit points of this type. 
We put 

(8) f , 1 ^ = \ lim#/(A)) I u0 G Uc, nx G QV. 
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Then we have 

(9) =̂0 = U ^ = U' *(*), 

where, by Lemma 3, one may restrict G to the (n — l)-dimensional cells 
in the second union, denoted by (J'. 

Moreover the unions in (9) are locally finite. To see this, we note that, 
for any x0 = (£?) e P^iC) and for any finite set of indices J such that 
£° T̂  0 for ally e / , there exists a neighbourhood Nofx0 such that for any 
(<y G N one has ^ ^ 0 for all j G J. It follows that if x0 e Aa then there 
exists a neighbourhood N of x0 such that ^ n N a (J ^T, which 
proves our assertion. Similarly, if x0 e <j>(U + iQ) then (taking J such 
that / cjz J(o) for any a e Z) we find a neighbourhood N of x0 such that 
°U^ n JV = 0 , which shows that (j>{U + iQ) is relatively open in f̂. We 
have thus proved the following theorem. 

THEOREM 1. °tt^ is relatively closed in % and is a locally finite union of 
the (n — \)-dimensional rational projective varieties P(G) (G G Z, dim G = 
n — 1). Moreover, one has 

P(G) n P(T) = P(G n T) for G, T G E, 

vv/zere we pwt i*(0) = 0 . 

The last assertion is an immediate consequence of Lemma 3. Thus the 
configuration of ^ is completely determined by the Hariko. 

7. In order to study the structure of % more closely, let {ml9 . . . , ms} 
be a finite subset of M* and put 

A = {u G U | <mh iC) > 0 (1 S i S s)}9 

A* = jZ^mJ^ > oj. 

We suppose that A ^ 0 , and A — {0} c Q. Then A and A* are 
mutually dual open (convex) polyhedral cones, and one has Q — {0} c A*. 
We assume further that {m^ . . . , ms} generates the semigroup 
Â* n M* — {0}. Thus {mt, . . . , ms} contains a basis of M*. 

We define a partial ordering in Q n M* by 

mU) <KmW) ^ m(f) _ mU) e Â* - {0}. 

A point m(Jl) is called A-minimal if there exist no m(j) G Q n M* such that 
m(j) < A mUl). It is clear that for any j 0 the set of all mU) which are not 
> A m ° o ) is finite; in particular, the set of all A-minimal elements in 
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Q n M* is finite. We denote by /(A) the set of all j such that mU) is 
A-minimal. 

Now for a positive integer 5 we put 

Ds = { ( Q e C s | | y < l ( l ^ i ^ ) } , 

D: = {(QeCs\0<\Q < 1(1 ^ i ^ ) } , 

and consider these as open subsets of an ^-dimensional complex projective 
space PS(C), whose coordinates are given by (£0, Ç1? . . . , Q . On the other 
hand, for any (nonempty) subset J of the set of indices iV = { l , 2 , . . . } , 
we denote by Pj(C) a complex projective space of dimension Card(J) — 1 
whose coordinates are given by (£,.) {j e J). We define an algebraic set 
QAJ in PS(C) x Pj{C) as follows. For each pair j l9j2 e ƒ we write 

(10) mÜ2) - mUl) = j^a^ (a, G Z). 
i = l 

ÔA,j i s by definition the set of all points (Q x (Q e PS(C) x Pj(C) 
satisfying all the equations 

do') ( n c?)«* = ( n ch 1 )^ 
corresponding to the linear relations of the form (10), where we put 
a0 = -]£?=i at and as before f\+ (resp. f |_ ) denotes the product taken 
over all i (0 ^ i S s) such that at > 0 (resp. af < 0). Note that, as a 
special case of the equations (10'), we have an equation of the form 

(io") n c?' = n £a<l> 
+ 

whenever we have an integral linear relation Yfi= l
 aimt = 0. 

We denote by n = nsJ and n' = <%J the projections of PS(C) x P7(C) 
onto PS(Q and Pj(C), respectively, and put 

DAJ = QAfJ n n-\Ds), D*pJ = QAfJ n n^D?). 

DA j is an algebraic set in Ds x Pj(C) defined by the set of equations (10% 
where we put Co = 1 • It is then clear that the map 

(11) U + ï'A Biih^ (£ju)) x (C0)(w)) e Ds
x x P,(C), 

where £f stands for Çm., gives rise to a homeomorphism 

(U + iA)/M « Z ) ^ . 
Note that the definitions of DAJ, 0A J? . . . depend not only on A but 
on the choice of the (ordered) set of generators {mf} of the semigroup 
Â* nM* - {0}. 
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If ƒ <= J' c N, we have a natural projection map 

Pjr: PS(Q x PAC) -> PJLQ x Pj(C). 

LEMMA 4. IfJ(A) c J c J ' , the projection pJ3, induces a homeomorphism 
of DAJ, onto DAJ, which is a birational analytic isomorphism if J and J' are 
finite. 

PROOF. For any he J' there exists^ e J(A) c: J such that m0l) ^ A m(k), 
i.e. 

(12) m(k) - m0 l ) = Ytbfnt 
i = l 

with btG Z,bt §: 0. Therefore we have 

(i2') ^ = (ru?')^ 

in DAr, which shows that the rational map pJJf is everywhere defined 
and injective on DA>J-. Clearly we have PJAD\,J) a DAJ. Now let 
(Q x (£j) e DA>J. Then, by virtue of the equations (10') holding in DAJ, 
the expression on the right-hand side of (12') does not depend on the 
choice of j \ G J nor on the expression (12). Hence we can define a poly
nomial map 

qrj: ö A f J - » D , x Pr(C) 

by (12') such thatpJJf o qJfJ = id. To show that the image of qJfJ is actually 
contained in DAtJ.9 let fc, k' G J' and m(fc) - m(k) = ]£* ajmf. We choose 
7\ G / as above and similarly^ e / such that 

s 

m(fc) — m ( j2 ) = £&Jm f 
i = l 

with b\ G Z, è|. ^ 0. We have to show that the £fc and £k, defined by the 
equations of the form (12') satisfy the equation 

(**) (iTc?,)& = (n'ci ' i i)k. 

Put af = a'i + bt — b\ (1 ^ / ^ s). Then we have m°'2) — m0l) = ]jT?=1 0,-m,-, 
whence by (10') holding in DAJ 

o ( n c f , ) ^ = (nciBi1)^-
If we put ct — Max(a|, 0) + bt — Max(af, 0), then ct is always ^ 0 and, 
multiplying J~J. CV on both sides of (*), we get (**). Q.E.D. 
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We write D(A), DX(A), 0A , TIA, . . . for DA)JV, Dx
>iV, 0AJV, < „ , 

respectively. Then by the above lemma we have 

D(A) * Z>A,„ D*(A) * DIJ 

for any / => «/(A). Taking ƒ to be finite, we see that D(A) has a (well-
defined) structure of an analytic space isomorphic to an open subset (in 
the sense of usual topology) of a finite-dimensional projective algebraic 
set, and DX(A) is a Zariski-open subset of D(A). We call D°(A) the 
(topological) closure of DX(A) in D(A). Then D°(A) is an irreducible 
component of D(A), which is isomorphic to an open subset of an n-
dimensional projective variety (determined uniquely up to birational 
equivalence). From the definitions we have 

(13) (/> | (U + JA) = 7iA o cj)A, $A(U + i\) = DX(A). 

8. Let {m'1? . . . , m't) be another finite subset of M* satisfying the 
conditions stated at the beginning of §7, and let A' be^he corresponding 
open polyhedral cone (i.e. {m'1? . . . , m't} generates A'* n M* — {0}). 
Suppose that A c A'. Then one has 

s 

(14) m;., = X dam, 
i = l 

with dw e Z, dw ^ 0. For (Q x {Q e £>(A), define 

</VA((Q x (<y) = (cr) x (<y 
where 

(14') Ci-=flC?"' (l^i'Zt). 

Again this is well-defined by the equations (10") holding in D(A), and 
gives a polynomial map of D(A) into Dt x P^iC). 

LEMMA 5. One has 0A,A(D(A)) cz D(A'). 

PROOF. We have to show that (Q,) x (Q e Dt x P^C) defined by 
(14') satisfies all the equations of the form (10') for A'. L e t y ^ ^ e N and let 

t 

mü2) _ m(ji) = £ a'vm'v. 

Then by (14) this is equal to £ s
= l a^ where at = X-/ = 1 du,ai" Since 

(Q x (yeD(A),onehas 
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where ]£' (resp £ ' ) denotes the summation taken over all i' (1 ^ j ' ^ r) 
such that a'v > 0 (resp. a'v < 0). Multiplying 

+ 

on both sides of (*), one gets 

or 

rr«*)«A = (rj «•*•)«*. 

which proves our assertion. Q.E.D. 

From the definitions it is obvious that the following diagram is 
commutative 

u + ; A - ^ D ( A K 

(15) inj 

U + ÎA' - ^ D(A') 

^oo(C). 

Hence we also have 0AA(D°(A)) c D°( A'). It is obvious that, if A c A' c 
A" (cz Q), then we have $A»A' o 0A,A = 0A»A. In particular, we see that, if 
A = A', (j)A, A gives an isomorphism of D( A) ont o D( A'). Thus the structure 
of D(A) (and hence that of D°(A)) is independent of the choice of the 
set of generators {ml9 . . . , ms} of the semigroup A* n M* — {0}. 

9. To proceed further we need the following notations. For a e E, 
put 

A. = U '• 
a(l) = a 

Then \ a is a relatively open, convex polyhedral cone in £/(cr)x, where 
£/(<T) is the (real) vector space spanned by M(o) and U(a)L is the orthogonal 
complement of U{G) in U. Hence we have dim Aff = n — dim a. It is also 
clear that 

;G <T => Aa> AT, 
(16) Q = (J Aff (disjoint union). 

( 7 6 Ï 
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(Thus {Aa((T e Z)} is a "rational polyhedral cone decomposition" of Q 
in the sense of Mumford [5], which is dual to our Hariko.) For any open 
convex cone A we put 

ZA = {<?([) | / c A} = {G G E | Aa n A * 0 } . 

Then SA is a closed (finite) subcomplex of £. In fact, from (16) we have 

(16a) ~Ra - {0} = U \ , 

whence follows that < T - < T , A T n A ^ 0=>A f f n A ^ 0 , which proves 
our assertion. 

LEMMA 6. For any open polyhedral cone A as defined in §7, 7iA(D°(A)) 
contains (j)(U -f iA) u U j, ^ a ^ ^ contained in 

<KU + iA) u U 4„, 
a e star(SA) 

where star(SA) = {i G S | T >- o- /or some cr G X A } . 

PROOF. TO prove the first assertion, let a e ZA, w0 e (7C, wx e Aff n A, 
«! ^ 0, and put n(X) = i/0 + iXux. Then w(A) e U + iA for sufficiently 
large A. It is clear that one has Cf(w(/l)) -» 0 (/I -• oo) for all 1 ^ i :g s. On 
the other hand, if we put 

0 _ [C(j>K) foryeJ((j), 
1 (0 tor j$J{o), 

then (C0)MA))) - (<??) in i>JC). Thus 

lim <£A(«W) = (0) x(tf)eD°(A) 

and 
*A«0) X «?)) = (£?) 6,4.. 

By Lemma 2, any (£?) G ̂  can be written in the form (*) with some 
n0 G Uc. Hence we have Aa a 7rA(D°(A)). 

Next, to prove the second assertion, let {n(v) (v = 1,2, . . .)} be a 
sequence in U + iA and suppose that 

<K("(v)) - *o = (C?) x (#)eD°(A) 
when v -> oo. If C? # 0 for all i, then clearly x0 G </>A(̂  + iA). Hence let 
us assume that £? = 0 for some i. Then, by taking a suitable subsequence, 
we may assume that 

l/0
v) -> l / 0 G £/ , W(

1
V) - • llt G A — { 0 } , Av -> OO, 

and that u^ e Aao (v = 1, 2, . . . ), ul e Aa for some <r0, cr G Z. Then one 
has cr0 G ZA and cr0 -< a. Put J 0 = {7 | £*} ¥= 0}. We contend that 
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J(a0) c J0 a J(a). Takey0 e J(a0), Then for any ƒ 

Im«m(J>) - mu°\ t/(v)» = Av<m0) - m(*>\ !#>> ^ 0. 

Hence one has j 0 e 70 , and 

j $J0o lim (Xv(m
U) ~ rnij0\ u^}) = oo. 

v - * oo 

In particular, if j $ J(a), one has 

lim (mU) - mUo\ !#>> = <mU) - mUo\ uxy > 0, 
v-*oo 

and therefore j $ J0, which proves our contention. Now, for any integral 
linear relation of the form (2), the corresponding equation (2') holds for 
(C0)(i/(v))) (j G J(G)) and hence, going to the limit, the same is also true for 
(£°). Therefore one has (£?) e P{a). By Lemma 3, this implies (£?) G Ax 

for some T -< a. Thus J0 = J(T) and we have T > (70 G ZA, i.e. T G 
star(EA). Q.E.D. 

10. For each a G Z, we put 

(17) 3ff = star(A„) = (J At. 

Ea is a (not necessarily convex) open polyhedral cone such that 
Sff — {0} cz Q. Let {m(j) | j G JQC0")} be the set of all vertices of a and 
put a\p = {m(j)} (J e J0(a)). Then from (16a) and (17) we have 
^ U ^ Â ^ . I t f o l l o w s t h a t 

s* = n A*y. 
j e J 0 ( < r ) 

Let {m£(l ^ i ^ s)} be a finite set of generators of the semigroup 
H* n M* — {0}. We fix one j 0 eJ0(a). Then, since A*y0> is an open 
polyhedral cone spanned by {m(k) — mUo)(k e N)}9 we have for each 
1 ^ / ^ 5 a (finite) linear relation of the form 

(18) am = X>fk(m
(k) - mUo)) 

k 

with ah aike Z, at > 0, aik ^ 0. Note that, since mi <£ U(a), there exists 
for each i at least one k such that aik > 0 and k $ J(<r). The convex closure 
of Ea is given by 

E** = {u G C/ | <wii, w> > 0 (1 ^ i ^ 5)}. 

Next we assign to each cr G E an open set Nff in /^ (C) defined as follows. 
Na consists of all (£,-) e Pœ(C) satisfying the conditions 

f ^ * 0 forjeJ(a)9 

(19) II \Wik < 1 for 1 £ Î £ *. 
I k 
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Then it is immediate that we have 

(<P(U + iCi) n Na = </>(U + iE%*), 

( 2 0 ) A . c ^ n N . c U ^ -

Since {E** (a e X)} is a star-finite open covering of Q, this implies that 
{% n Na(<j e X)} is a star-finite open covering of °U. 

LEMMA 7. We have 

(21) « n tf. = 7T'(D°(H**)) n TV,. 

PROOF. By Lemma 6 and (20), it suffices to show that Axc\ Na a 
n'(D°(E%*)) for T >• cr, T 7e o*. Changing the order of the indices i, we may 
assume that for 1 ^ i' ^ s 

mt e U(x) o 1 ^ i ^ st. 

Then, since AT is a face of 3 f f, one has 

A T C { M G C/(T)X I <mf, w> > 0 for sx + 1 ^ i S s}. 

Let «! e At and w0 G UC be such that <m-, Im w0> > 0 for 1 ^ i ^ 5X. 
Then u{X) = w0 + üwj G S** for sufficiently large A, and one has 

lim 4>S*>W) = (C?) x ( t f ) e
 Ö°(S;*), 

À—*• oo 

where 

' lo (Sl + 1 S i ^ s ) J [O O ^ J ( T ) ) . 

From the relation (18) and from our choice of u0, we have 

n itf/&rk = ic?r < i 
k 

for all 1 ^ i: ^ s\ Thus we see that the condition (19) is satisfied for 
(<*?), i.e. (<*?) G 7V̂ . By Lemma 2, it is clear that any (£°) e Ax n Na can be 
obtained in this manner. Q.E.D. 

It follows from this lemma that % n Na does not depend on the choice 
of the set of generators {mt (1 ^ / <; s)} nor on the relation (18). 

LEMMA 8. % n Nff has a structure of an analytic space such that, for 
any sufficiently large finite set J c= iV, the natural projection PJC) -> 
Pj(C) induces an analytic isomorphism of <% n Na onto an open subset of a 
projective variety in Pj(C) whose birational class is uniquely determined.3 

3 By a result in [5], <% n Na is normal, if J(E**) = J{a) and if we can take ai = 1 for all 
1 ^ i ^ s in (18) where y0 may vary in J(o). 

It is not known if °U is always normal. 
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PROOF. Let J be a finite subset of N containing J(H**) (=> J(a)) and 
all k such that aik > 0 for some 1 ^ i; ^ s, and let NatJ be the image of 
Na under the projection map Pœ(C) -> Pj{C), which is everywhere 
defined on Na\ then NaJ is an open subset of Pj(C). For simplicity we 
write QaJ, DaJ,... for ôE**,j, £>3**,j,. . . , respectively. Let D° 3 denote the 
(topological) closure oîD*j in DffJ ; then D° 3 ( « D°(EJ*)) is an irreducible 
component of Da 3 ( « D(EJ*)). Moreover there exists a unique «-dimen
sional (global) irreducible component Q° j of Qa 3 such that 

Now, for (Q x (Q eQljn (n'y \N,,tJ) with Co # 0, we have by (18) 

(is') (c;/c0)
ai = n (Wo)"* (i ^ « ^ *)• 

k 

Hence we have by (19) |C»/C0I < 1 for all 1 ^ i ^ j , i.e. (Q x (^) G D%tJ. 
This shows that D° j n (fl')-1(N<r,j) *S a Zariski-open subset of Q?aJ n 
(7r')_1(^,j)- Therefore n\D%J) n iVff>J is an open subset of 7c'(Q2,j) n A^j . 
Thus 7i'(^2 J) n Na j is an open subset of a projective variety 7r'(ô° j) in 

By (18') we see that the projection map n' = n'atJ induces a proper 
analytic map (of finite degree) of Z>° 3 n (n')~l(N0tJ) onto 7T'(I>2,J)

 n
 ^ , J -

In view of Lemma 4, we see that, if ƒ c J', the natural projection PJJf 

induces a (birational) analytic isomorphism of D® 3, onto D°a 3 which makes 
the following diagram commutative. 

D°aJ n (nr\NaJ)^D°a<J. n ( « T 1 ^ ) 

It follows that, if J is sufficiently large, the natural projection Pœ(C) -> 
Pj(C) induces a homeomorphism 

n'(D°(E**)) nNa* n ' ( < j ) n iVff>J, 
which defines a structure of an analytic space on n'(D°(E**)) n Na 

independently of the choice of J. As we mentioned above this analytic 
space is isomorphic to an open subset of an ^-dimensional projective 
variety whose birational class is uniquely determined. In view of Lemma 
7, the proof is complete. 

We note that, when °U n Na r\ Nx ^ 0 , the analytic structures on 
% n Nff n NT induced from those on <% n Na and % n Nx coincide. 
In fact, by the above lemma, if J is sufficiently large, the natural projection 
PooiQ ""* ^ J ( Q induces analytic isomorphisms 

« n Na « n'(D°aJ) n TV,,,, « n 7VT « *'</>?,,) n 7VT>J. 
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Hence, if °ll n Na n Nx ^ 0 , we have 

which implies 7r'(Ô°,j) = 7i'(ô°j)- This proves our assertion. 
Since °)l is a star-finite union of {^ n A^cr G E)}, we can conclude that 

% is locally compact and has a structure of an rc-dimensional irreducible 
analytic space. Actually, as we have seen above, % is an analytic space 
obtained by gluing together open subsets of projective varieties by every
where biregular birational correspondences; we will express this by saying 
that ^ is "locally algebraic". From the definition of the analytic structure 
on %, it is clear that °U^ is an (n — l)-dimensional closed analytic subspace 
of ^U and % — °ll^ is analytically isomorphic to the quotient space 
(U + iQ)/M. 

11. Now a natural question arises. Is the analytic space °U (or its 
normalization) nonsingular? Unfortunately, the answer is negative in 
general.4 But, from what we mentioned in §10, °U is nonsingular at 
x0 e ^ n Nff, if D°(SJ*) is nonsingular at y0e(n,)~i(x0) and if the 
projection n' is a local analytic isomorphism at y0. We shall give here a 
simple sufficient condition for these. 

Suppose that there are n + 1 points m(Io), . . . , m(in) on the Hariko |Z| 
such that mk = miik) — m(io) (1 ^ k ^ n) form a basis of M* and that 
AJ0(ÖT0 = {m(lo)}) is spanned by {mk (1 ^ k :g n)}. We contend that under 
this assumption all points on n'(D°(Aao)) are nonsingular. 

In fact, by the assumption, every mU) e Q n M* can be written uniquely 
in the form 

n 

(22) mU) = m(*o) + £ akmk 

with ake Z,ak §; 0. Hence we have 

(22') .̂ = ( rW)^„ 

in D(Aff); in particular, t,iu — Cfc^0. Therefore the natural projection 
Dn x /^ (C) -> DM induces an isomorphism of D(A(To) onto DM. It follows 
that D°(A(To) = ö(Aff0) and Z)0(Affo) is nonsingular. It is also obvious that 
the projection Dn x P00(C) -» /^ (C) induces an isomorphism of D°(Aao) 
onto 7i'(D°(A(To)). Thus 7r'(^°(A<ro)) is nonsingular. Note that, in this case, 
one has Hffo = A(To and by Lemmas 6 and 7 t n JVff0 = 7c'(ö0(Aff0)). 

4 ADDED IN PROOF. For instance, in the case of Hubert modular surface, it can be shown 
that our blow-up <% is obtained from the nonsingular surface Y* constructed in Hirzebruch 
[3b] by blowing down each chain of curves Sk with self-intersection number —2 to a point. 
The singularities thus created are just (isolated) ramification points, and so % has a structure 
of K-manifold. 
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12. Finally, we define a natural action of T on %. First, since Q and M* 
are both invariant under T , so are Q n M*, £ = £(Q, M*), . . . . It 
is clear from the definition that for a half-line / c Q, one has 

(23) a (y ( / ) ) ^^ -V( / ) ) . 

Hence we have y(Aff) = Aty-iff, y(SJ = Hty-lff. 
We define an action of T on the set of indices N by 

(24) ƒ - yy <*> m0,) = (7~1mü), 

and its action on P^iC) by 

(24') «i) = 7 ( ^ ) o ^ = {,-.j. 

Then, since <m0), yi/> = <'ymU), i/> = <m(y-lj), w>, we have 

(25) <!>{yu) = y<t>iu) for w e £/ + iQ, 

i.e. the map cj) is T-equivariant. It follows that %^ is T-invariant, and in 
view of (23) we have 

(26) yP(a)^P^y-"a). 

Now let Na be as defined in §10 and suppose that Nty-ia is defined with 
respect to the set of generators {ty~1mi(l ^ i ^ s)} and the relations 
corresponding to (18). Then it is clear that y(Na) = Nty~ia and y induces a 
(birational) analytic isomorphism of ty c\ Na onto ^ n Nty-ia. We 
express this property of y by saying that y is a "locally birational" analytic 
automorphism of ôll. 

Now, from the reduction theory for T [2], we know that there exists a 
finite number of (n — l)-dimensional cells ox (1 ^ v ^ v0) such that 
every (n — l)-dimensional cell o in £ is T-equivalent to a unique <rv. 
Then we have 

(27) n = U S * V = U rs*¥*, 

which is a star-finite union. It follows from (20) that we have 

(28) « = U (* rs Nty-,J = U )<* n JVJ. 
y, v y , v 

Since this is a star-finite open covering of ̂ , we see that the action of F 
on % is properly discontinuous. Taking the quotient with respect to T, 
we obtain from (28) 

F\% x (F\(U + iCtyvTyVn 

(29) 
= U iVT* n jvj. 
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By a theorem of H. Cartan, T\9l is an analytic space. Moreover, if we put 
Ta = {y e r | yP(a) = P(G)}, then Ta is a finite group and we have 

vo 

(30) T\<*n * U rav\P(ov). 
v = l 

Thus F y ^ , which is a closed analytic subspace of T\%9 is a finite union of 
(n — l)-dimensional projective varieties. 

Summing up, we have obtained the following result. 

THEOREM 2. % = <j)(U + iQ) u tft^ carries a natural structure of an 
n-dimensional, irreducible, locally algebraic analytic space, in which W^ 
is a closed analytic subspace and (j)( U + iQ) is an open subspace isomorphic 
to the quotient space (U + iQ)/M. The group T acts on °U as a properly 
discontinuous group of locally birational analytic automorphisms, and the 
quotient space T\W is a finite union of quotient spaces of open subsets of 
projective varieties by birational equivalence relations. Moreover, °ll^ is 
stable under T and the quotient space T\^l^ is a finite union of (n — 1)-
dimensional projective varieties of the form T(T\P(a), where Tff is a finite 
subgroup of T which stabilizes P(G). 

REFERENCES 

1. W. L. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric 
domains, Ann. of Math. (2) 84 (1966), 442-528. MR 35 #6870. 

2. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of 
Math. (2) 75 (1962), 485-535. MR 26 #5081. 

3a. F. Hirzebruch, The Hubert modular group, resolution of the singularities at the cusp 
and related problems, Sém. Bourbaki, 23-e année, 1970/71, n°396. 

3b. — , Hubert modular surfaces. Enseignement Math, (to appear). 
4. J.-I. Igusa, A desingularization problem in the theory of Siegel modular functions, 

Math. Ann. 168 (1967), 228-260. MR 36 # 1439. 
5. D. Mumford, et al., Toroidal embedding s, I, Seminar notes at Harvard Univ., 1972. 
6. I. I. PjateckiT-Shapiro, Geometry of classical domains and automorphic functions, 

Fizmatgiz, Moscow, 1961; English transi., Automorphic functions and the geometry of 
classical domains, Math, and its Applications, vol. 8, Gordon and Breach, New York, 
1969. MR 25 #231 ; 40 #5908. 

7a. I. Satake, Compactifications of the quotient spaces for arithmetically defined discon
tinuous groups, Ann. of Math. (2) 72 (1960), 555-580. MR 30 #594. 

7b. , Realization of symmetric domains as Siegel domain of the third kind, Lecture 
Notes, Univ. of California, 1972. 

8. C. L. Siegel, Zur Theorie der Modulfunktionen n-ten Grades, Comm. Pure Appl. Math. 
8 (1955), 677-681. MR 17, 602. 

9. E. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov. Mat. Obsc. 12 
(1963), 303-358 = Trans. Moscow Math. Soc, 1963, 340-403. MR 28 #1637. 

10. H. Yamaguchi, On defining equations of certain projective varieties (to appear). 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 

94720 


