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ABSTRACT. A normed space E is not isomorphic to a subspace of 
some Lp(/j) space if and only if there exists a series in E which does 
not converge absolutely but such that every continuous linear image 
of this series in lp converges absolutely. 

In this paper we derive the following theorem which is a strengthening 
of the Dvoretzky-Rogers theorem [1]. 

THEOREM. A normed space E is not isomorphic to a subspace of a space 
Lp(ii) for any measure /i (1 ^ p ^ oo) if and only if (*) there exists in E a 
series £ xn with each xn in E such that ]jT ||xn|| = oo but £ ||Txn|| < oo 
for each T in L(£, lp). 

The theorem is vacuously true for p = oo since every normed space is 
isometric to a subspace of the space of all bounded functions on some set. 

The method used to prove this theorem is the analysis of the duality 
of vector sequence spaces. An account of this method is given in [3]. 
The proof encompasses normed spaces over both the real and complex 
fields. 

For E a normed space we consider three spaces of sequences. 
/1(E) consists of all (xM) in E for which 

IIWII = Z llx.ll < ». 
n 

m(E) consists of all (xn) in E for which 

II W I L = sup{ | |x j | :n= 1,2, . . . } < oo. 

<jp(E) consists of all sequences (x„) in E for which 

I IWIIP = sup j l \\TxH\\:Te U(E, lÀ < oo. 

Here U(E, lp) denotes the closed unit ball of L{E, lp) i.e. all continuous 
linear mappings Tfrom E into lp with ||T|| ^ 1. 

In the sequel we let Up denote the closed unit ball of lp and U°p the polar 
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of Up i.e. all continuous linear functional x' on lp such that |<x, x'>| :g 1 
for each x e Up. 

It is well known that ll(E) and m(E) are normed spaces with their 
respective norms || || and || ||m. It is easy to see that ap(E) is also a normed 
space with the norm || ||p. If E is a Banach space then all three of the 
vector sequence spaces are complete as well. 

If E' is the topological dual space of E then m(E') is isometric to the 
topological dual space of ll(E) under the natural bilinear form 

<(*„), (<)> = I <*„, K> W e HE), (x'n) e m(£')-
n 

PROOF OF THE THEOREM. 1 ^ p < 00. 

NECESSITY OF (*). We may assume £ is a complete space since if we can 
find a series in E, the completion of JE, which satisfies (*) we can also find 
such a series in E by an easy perturbation argument. 

If (*) does not hold then 1(E) = op(E). Since both spaces 1(E) and ap(E) 
are Banach spaces with their respective norms there is A > 0 such that 
(1) IIWII û A ||(xn)||p, 

from which we get 

(2) Oil tè A sup JX UTx„):4>n BlTp,Te U(E, I, 

From (2) it follows that the unit ball of m(E') is contained in the w*-closed 
convex cover of sequences having the form (/LT'^J where ||T|| ^ 1 and 
| | 0 J :g 1 for each n. 

Suppose A = {xj, x2, . . . , xfc} is any finite subset of E. We shall show 
how to find a mapping TA in U(E, lp) such that 

(3) ||7^x11 > (1/2A) ||x|| xeA. 

Let X = (x'j, x'2, . . . , xjt, 0, 0, . . .) be a sequence in m(E') such that 
xn(xn) = II*J a n d 11x1,11 = 1 for n = 1, 2, . . . , k. By the preceding 
paragraph we can find Tu . . . , Tr in U(E, Ip); ct, i = 1, 2, . . . , r with 
YJ{ = ! Ci = 1 and 4>ip i = 1, 2, . . . , r; j = 1, 2, . . . in U°p such that 

(4) * - tc&Tfaj), xne\ <imin{ | | j c j | :n = 1,2, . . . , * } 

for each xn ;« = l , 2 , . . . , f c . Here xMe„ is the sequence with xn in the «th 
place and 0's elsewhere. From (4) we see that for each n 
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or what is equivalent 

(5) icJTftJ > ^ | | x j ; « = 1 , 2 , . . . , * . 

Let Z consist of all r-tuples (ylt . . . , yr) with each y{ in lp. With the norm 
\(yt)\ = Q> c, | | j ; ir)1 / p , Z is isometric to /,. Define TA in L{E, Z) by 
T(x) = tfx). Then ||T^|| ^ 1 and since £ = 1 c . = i 

II TAxJ è t \ct\ || T(xJ| > ^ llx.ll ; n = 1, 2, . . . , k. 

Thus T^ satisfies (3). 
If F is any finite dimensional subspace of £ and 0 < s < 1/22 arbitrary 

let A be an e-net for the unit sphere of F. If TA in U(E, lp) satisfies (3) then 
TF the restriction of TA to F is an isomorphism from F into lp with 
\\TF\\ HTVl <; 1/22 - e. Thus by Proposition 7.1 of [2] E is isomorphic 
to a subspace of Lp(/x) for some measure fi. 

SUFFICIENCY OF (*). It suffices to show that there is A > 0 such that if 
A is any finite subset of Lp(/i) there is TA e L(Lp(fi), lp) with 

£||7>|| ^ AX IÎ (x)||. 
xeA xeA 

The dual space (Lp(fi))' of Lp(ju) is an !£'p space so there is a continuous 
linear isomorphism S from lk

p, into (Lp/i) whose image contains {y'x:xe A} 
where <x, yx} = ||x|| for each x e i , and ||S|| | |S_1i| < X where A is 
independent of A. We can assume ||S|| S 1 and extend S to all of Zp, by 
means of the natural projection of lp. onto lk

p>. Let <j)x in /p, be such that 
||<M S X and S$x = y'x. Then 

ZWI - I<x, yx> = S <x, S0X> 

£*El|S'x||. 
xeA 

We complete the proof by taking TA to be S' (restricted to Lp{p) in the 
case p = 1). 

If we set p equal to 2 in the theorem we obtain the following charac­
terization of Hubert space. 

COROLLARY. A normed space E is not isomorphic to an inner product 
space if and only if there exists in E a series £ xn with ]T | |xj | = oo but 
YJ II Txn\\ < oo for each T from E into Hilbert space. 

The Dvoretzky-Rogers theorem follows easily from this corollary. In 
fact, if E is an infinite dimensional normed space which is isomorphic to 

llx.ll
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Hubert space we let xn = {l/n)yn where {yn} is an orthonormal system 
in E with respect to some inner product. Otherwise we let {xn} be obtained 
by the corollary. In either case £ *n converges unconditionally but not 
absolutely. 
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