TOPOLOGICAL INVARIANCE OF CERTAIN COMBINA-TORIAL CHARACTERISTIC CLASSES

BY LOWELL E. JONES

Communicated by William Browder, January 22, 1973

 $(X, \partial X)$ denotes a finite polyhedral pair which is a rational homology manifold pair. σ denotes an additive invariant associated to nonsingular quadratic forms over the rationals, e.g., the index the discriminate. In this note we prove what the title says, for certain combinatorial invariants $\gamma(X, \sigma)$ associated to X.

The classes $\gamma(X, \sigma)$, which generalize the combinatorial Pontrjagin classes, occur as one of the two following types:

(a) If the additive invariant σ is the index, then

$$\gamma(X, \sigma) \in K_x^{\overline{G/TOP}}(X, \partial X)^1$$

where $x = \dim(X)$; for X a PL manifold, $\gamma(X, \sigma)$ localized away from 2 coincides with the KO_* orientation class for X defined in [8]; and $\gamma(X, \sigma) \otimes_z Q$ is equivalent to the PL Pontrjagin classes.

(b) If σ has finite exponent, then $\gamma(X, \sigma) \in \sum_i H_{4i+x}((X, \partial X), Z_4)$. Rational manifolds are the only possible fixed point sets of PL actions of groups of prime order on manifolds [6]. If X is the fixed point set of such an action then the bocksteins of certain of the exponent four classes $\gamma(X, \sigma)$ must vanish [3].

For any closed, rational homology manifold Y, $\sigma(Y)$ will denote the evaluation of σ on the mid-dimensional intersection pairing of $H_*(Y,Q)$. Note that $\sigma(Y)=0$ if $\dim(Y)\neq 0$ (4). Let $\{P\}$ denote the set of subpolyhedra in $X\times D^L$ (L= large) which have either linear normal bundles or linear normal bundles with " Z_q -type" singularities [4], [7]. It is an important theorem that the classes $\gamma(X,\sigma)$ can be identified with the geometric construction $\{P\}\to \{\sigma(P)\}$ (see [7], [8], and compare with [3]).

Let $(X, \partial X)$, $(X', \partial X')$ denote finite polyhedral pairs which are rational homology manifold pairs.

THEOREM. If $f:(X,\partial X)\to (X',\partial X')$ is a topological homeomorphism then $f_*(\gamma(X,\sigma))=\gamma(X',\sigma)$.

AMS (MOS) subject classifications (1970). Primary 57D20; Secondary 57B99.

¹ $\overline{G/TOP}$ is the torsion free (in homotopy) H-space factor of G/TOP, with respect to the "characteristic variety" H-space structure for G/TOP [7]. $K_*^{G/TOP}$ () denotes the homology theory having $\overline{G/TOP}$ as its zeroth loop spectrum.

PROOF. It will suffice to consider $\sigma(P)$ for those polyhedra $P \subset X \times D^L$ which have $P \times D^m$ for a regular neighborhood.

Following Novikov [4], let $T^{m-1} \times I \subset D^m - \partial D^m$ denote the standard embedding of the (m-1)-torus, crossed with the unit interval, into the open m-ball. Consider the restriction

$$\bar{f}: P \times T^{m-1} \times I^0 \to f(P \times T^{m-1} \times I^0).$$

 $f(P \times T^{m-1} \times I^0)$ has an "end" E in the finite CW category, because $P \times T^{m-1} \times I^0$ does and $f(P \times T^{m-1} \times I^0)$ is properly homotopically equivalent to $P \times T^{m-1} \times I^0$ under \bar{f}, \bar{f}^{-1} (see [5], [9]).²

By adding the end E to $f(P \times T^{m-1} \times I^0)$, outside a compact rational homology manifold neighborhood R for $f(P \times T^{m-1} \times 1/2)$ in $f(P \times T^{m-1} \times I^0)$, a CW complex triple $(Y, \partial_+ Y, \partial_- Y)$ is constructed satisfying

- (i) $(Y, \partial_+ Y, \partial_- Y)$ is homotopy equivalent to $P \times T^{m-1} \times (I, 0, 1)$.
- (ii) R^0 is contained in Y as an open set, and the orientation class for $(Y, \partial Y)$ restricts on $(R, \partial R)$ to the orientation class for $(R, \partial R)$.

Finally by putting the composition map

$$(Y, \partial_{\pm}Y) \sim P \times T^{m-1} \times (I, \partial_{\pm}I) \xrightarrow{P_2 \times P_3} T^{m-1} \times (I, \partial_{\pm}I)$$

in transverse position to $T^{m-1} \times 1/2$ (see (ii) above), we obtain a "cobordism" W from $P \times T^{m-1}$ to a polyhedron L which is a PL collared subset of $f(P \times T^{m-1} \times I^0)$. Note that there is a canonical map $h: W \to T^{m-1}$, and that $\gamma(X, \sigma)$ is computed "on P" as $\sigma(h_{|\partial_{-}W}^{-1}(t_0))$, where $t_0 \in T^{m-1}$. The corresponding computation for $\gamma(X', \sigma)$ is $\sigma(h_{|\partial_{-}W}^{-1}(t_0))$.

To complete the proof of the theorem it must be shown that $\sigma(h_{\partial_+W}^{-1}(t_0)) = \sigma(h_{\partial_-W}^{-1}(T_0))$. We do this by constructing a rational Poincaré duality cobordism from $h_{|\partial_+W}^{-1}(t_0)$ to $h_{|\partial_-W}^{-1}(t_0)$. First note that W is actually a Poincaré cobordism with respect to the coefficients $Q(\pi_1(T^{m-1}))$ (see (i), (ii) above). Use the PL rational homology manifolds structures of $\partial_\pm W$ to put $h_{|\partial_\pm W|}$ in transverse position, simplex by simplex to the sequence $t_0 \subset T^1 \subset T^2 \subset T^3 \subset \cdots \subset T^{m-2} \subset T^{m-1}$. There is one surgery obstruction, $S(h, \partial h)$, to extending this sequential transversality to all of h in the category of codimension one nested spaces which are Poincaré with respect to the nested coefficients $Q \subset Q(\pi_1(T^1)) \subset \cdots \subset Q(\pi_1(T^{m-1}))$ (see §7.11 of [2]).

It only remains to see $S(h, \partial h) = 0$. It is helpful to consider $S(h, \partial h)$ in the following simple (but, by the constructions of [2], universally typical) case. M, N are two, compact, differentiable manifolds with dimensions

² To construct ends in the finite CW category, replace the handlebody techniques used in [5], by the cellular techniques of [9].

 $\gg m$, having boundary components $\partial_i M$, $\partial_i N$. Let the maps

$$\partial_0 M \subset M \xrightarrow{h_M} T^{m-1} \xleftarrow{h_N} N \supset \partial_0 N$$

induce isomorphisms of fundamental groups. $g:\partial_0 M \to \partial_0 N$ is a homology equivalence with respect to the coefficients $Q(\pi_1(T^{m-1}))$, and g commutes with h_M , h_N . Let $h: W \to T^{m-1}$ equal the union along g of h_M and h_N . A transversality of $h_{|\partial W}$ to $t_0 \subset T^1 \subset T^2 \subset \cdots \subset T^{m-1}$ extends to all of h if $g:\partial_0 M \to \partial_0 N$ can be made transversal to

$$h_{\partial_0 N}^{-1}(t_0 \subset T^1 \subset \cdots \subset T^{m-1})$$

in such a way that

$$g:g^{-1}(h_{\partial_0N}(t_0\subset T^1\subset\cdots\subset T^{m-1}))\to h_{\partial_0N}^{-1}(t_0\subset T^1\subset\cdots\subset T^{m-1})$$

is a homology equivalence with respect to the nested coefficients $Q \subset Q(\pi_1(T^1)) \subset \cdots \subset Q(\pi_1(T^{m-1}))$. This is precisely what the "rational form" of the Farrel-Hsiang splitting theorem allows [1]. It might be necessary to first vary $g:\partial_0 M \to \partial_0 N$ through a cobordism which is a homological H-cobordism with respect to the coefficients $Q(\pi_1(T^{m-1}))$ before achieving the desired transversality of g. But such a variation is allowed in the argument of the previous paragraph. Q.E.D.

BIBLIOGRAPHY

- 1. F. T. Farrell and W. C. Hsiang, Manifolds with $\pi_1 = GX_{\alpha}T$, Amer. J. Math. (to appear).
- 2. L. Jones, Patch spaces: A geometric representation for Poincaré spaces, Ann. of Math. (to appear).
- 3. ——, Combinatorial symmetries of the m-disc, Bull. Amer. Math. Soc. 79 (1973), 167–169.
- **4.** S. P. Novikov, *Pontrjagin classes*, the fundamental group, and some problems of stable algebra, Internat. Congress Math. (Moscow, 1966); English transl., Amer. Math. Soc. Transl. (2) **70** (1968), 172–179. MR **37** #6956.
- 5. L. Siebenmann, The obstruction to finding a boundary for an open manifold, Ph.D. Thesis, Princeton University, Princeton, N.J., 1965.
- 6. P. A. Smith, Transformations of finite period. I, II, Ann. of Math. 39 (1938), 127-164; Ann. of Math. 40 (1939), 690-711. MR 1, 30.
- 7. D. Sullivan, *Geometric topology*, Lectures at Princeton University, 1967 (mimeographed).
- 8. ——, Article in Proceedings of the Conference on Topology of Manifolds, held August 1969 at the University of Georgia, Athens, Ga.
- **9.** C. T. C. Wall, Finiteness conditions for C. W. complexes, Ann. of Math. (2) **81** (1965), 56–69. MR **30** #1515.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, New JERSEY 08540 Current address: 2180 Beach Drive, Seaside, Oregon 97138