DIRICHLET FINITE BIHARMONIC FUNCTIONS ON THE POINCARÉ N-BALL

BY D. HADA, L. SARIO, AND C. WANG¹ Communicated by W. T. Martin, February 8, 1973

On a Riemannian manifold R, let $\Delta = d\delta + \delta d$ be the Laplace-Beltrami operator. By definition, a sufficiently smooth function u on R is harmonic (biharmonic) if $\Delta u = 0$ ($\Delta^2 u = 0$). Denote by D the class of those functions f on R for which $D(f) = \int_R df \wedge *df$ is well defined and finite.

By the Poincaré N-ball we mean the ball

$$B_{\pi}^{N} = \{x = (x^{1}, \dots, x^{N}) \mid |x| < 1\},\$$

α constant, endowed with the Poincaré-type metric

$$ds_{\alpha} = \lambda(x) |dx|, \qquad \lambda(x) = (1 - |x|^2)^{\alpha}.$$

The first purpose of this paper is to determine those values of the parameter α for which the class $H^2D(B^N_\alpha)$, $N \geq 3$, of Dirichlet finite nonharmonic biharmonic functions on B^N_α is nonvoid. In Sario-Wang [3] it was proved that $H^2D(B^N_\alpha) \neq \emptyset$ for N=3 if and only if $\alpha > -3/5$, and the question was raised whether the same is true for every N if and only if $\alpha > -3/(N+2)$. We show that this is indeed so if $1 \leq N \leq 6$. However, quite unexpectedly, for N>6 it turns out that $H^2D(B^N_\alpha) \neq \emptyset$ if and only if $\alpha \in (-3/(N+2), 5/(N-6))$.

The above result has interesting applications to the classification theory. Let Q be the class of quasiharmonic functions u, defined by $\Delta u=1$, and denote by QD the subclass of Dirichlet finite functions in Q. The classes O_G , O_{QD} , and O_{H^2D} of Riemannian manifolds without Green's functions, QD-functions, and H^2D -functions, respectively, have the following properties:

- (i) For every N, the classes O_{QD} and O_{H^2D} decompose the totality of Riemannian N-manifolds into three nonempty disjoint subclasses.
 - (ii) For every N, the class $O_G O_{H^2D}$ is nonvoid.
- (iii) For N > 6, the classes O_G and O_{H^2D} decompose the totality of Riemannian N-manifolds into four nonempty disjoint subclasses.
- (iv) The unit N-ball with the natural metric $(1 |x|^2) |dx|$ belongs to O_{H^2D} if and only if N > 10.

The proofs will appear in [1].

AMS (MOS) subject classifications (1970). Primary 31B30.

¹ This work was sponsored by the U.S. Army Research Office—Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.

BIBLIOGRAPHY

- 1. D. Hada, L. Sario and C. Wang, Dirichlet finite biharmonic functions on the Poincaré N-ball, J. Reine Angew. Math. (to appear).
- 2. L. Sario and C. Wang, Quasiharmonic functions on the Poincaré N-ball, Rend. Mat. (to appear).
- 3. _____, Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math. (to appear).

Department of Mathematics, University of California, Los Angeles, California 90024