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1. Introduction. Let Q denote the field of rational numbers, and let / 
be a prime number. Let S be a finite abelian /-group. We define 

rank S = dimFl(S ®Zl Fz), 

where Zt is the ring of the /-adic integers, and Ft is the finite field of / 
elements. 

The following classical theorem can be proved using the genus theory 
of Gauss. 

THEOREM 1.1 (Cf. [5, THEOREM 4]). Let H = Q(D1/2) be a quadratic ex­
tension of Q with discriminant D, and let d denote the number of distinct 
rational primes dividing D. Let SH denote the Sylow 2-subgroup of the ideal 
class group of H (in the wide sense). Then 

(i) if H is imaginary quadratic, rank SH — d — 1, 
(ii) if H is real quadratic, 

rank SH = d — 1 if no prime p = — 1 (mod 4) divides D, 

— d — 2 if some prime p = — 1 (mod 4) divides D. 

In this paper we present analogous results for the ranks of the Sylow 
3-subgroups of the ideal class groups of the following fields : 

(i) cyclic cubic extensions of Q(Q, where ( is a primitive cube root of 
unity, 

(ii) pure cubic extensions of Q (cf. [1] and [2]), 
(iii) cyclic cubic extensions of Q. 

2. Cyclic cubic extensions of Q(0« Let F = Q(Ç), where C is a primitive 
cube root of unity. Let K/F be a cyclic cubic extension. By Kummer 
theory K = F(xl/3) for some xeF. Let M be the maximal abelian un­
ratified extension of K (i.e., the Hilbert class field of X), and let Mx 

be the maximal abelian extension of F contained in M. (Mx is called the 
genus field of K/F.) Let CK denote the ideal class group of K, and let SK 
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denote the Sylow 3-subgroup of CK. Let T be a generator of the cyclic 
group Gal(K/F). Let C{~x = {a^aeC*} and C$ = {aeCK\ax = a}. 
(C^~T is called the principal genus of K/F, and C£} is called the group of 
ambiguous ideal classes of KjF) Define Sl

K~x = {al~x\aeSK} and 
Sg> = {aeSK\ax = a}. 

Class field theory shows that Gal(M/X) ^ CK. The following results 
are also known (cf. [3, p. 24] and [5, pp. VII-3, VII-13]). 

LEMMA2.1. Gal(M/MO ^ Ci~T,Gal(M1/K) ^ CK/Ck~x ^ SK/S\r\and 
mnkSP = rankSK/S£-T. 

Now 
rank SK = rank SK/Sl = rank SK/Sk~x + rank Si~T/S|. 

{Note. For X = F(x1/3), it can be shown that S | Ç S£~T; hence the 
above groups are well defined.) The next result is a consequence of [4, 
p. 274]. 

LEMMA 2.2. Let t = rank S&' = rank SK/Sk~x. Then t = A + q - 2, 
where 

d = number of ramified primes in K/F, 

q= 1 ifÇeNKIFK, 

= 0 ifC$NK/FK 

and NK/F is the norm map from K to F. 

REMARK. The t in Lemma 2.2 is analogous to rank SH in Theorem 1.1 
since rankS^ = rankS^/S^ = rank SH/S^-<7, where o is a generator of 
Gal(H/Q). Thus the cyclic cubic case K/F is more complicated than the 
quadratic case H/Q because we must also consider rank Sjc~

x/S^. 
Our problem then is to compute rank S^'V^i- Let 

SiSt/s^^si-vsl 

a modS|~ T R>a1-Tmod S|. 

This map is surjective, and ker ô = (S£} • Sjc~
x)/Sjc~

x. Let 

s = r a n k ( S ^ - S r i ) / S r t . 

Then rank S^'/S^ = t — s. So we have established the following result. 

PROPOSITION 2.3. rank SK = It — s, where t is given by Lemma 2.2, and 

s = r ank(SW-Sr t ) /S r i -
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The computation of s requires further discussion. We recall that 
Gal(M1/iC) ^ SK/SK~X, which is an elementary abelian 3-group of rank 
t. Then by Kummer theory Mt = K(x{/3,..., x,1/3), xt e K. Let al9..., a, 
be ideals of K whose ideal classes c l ^ ) , . . . , cl(a,) form a basis for S^. 
(Note that S£} is also an elementary abelian 3-group of rank t.) 

PROPOSITION 2.4. s = rank of the matrix (a -̂), where atj e F3 = finite 
field of 3 elements, 1 ^ i :g t, 1 Sj S t; C*iJ = (x*/3)MiJ_1 (power residue 
symbol); fitj = Artin symbol (9Ï,., K(x/ /3)/K). 

PROOF. Let ^ : S^) - • F 3 be the composite map 

S#> - SK - SK/Sk~x -> Gal(Mx/X) 

^ Gal(K(xî /3)/K) x . . . x Gal(K(x,1/3)/K) ^ F<3, 

where the first map is the natural inclusion ; the second map is the natural 
projection; and the last three maps are isomorphisms. (F3 denotes a 
vector space of dimension t over F3.) Then s = rank(S'^) • SK~T)/<S£~T = 
rank \jj = rank(a0), since (a0) is the matrix of \// with respect to the bases 
{cKaJ, . . . , cl(a,)} and {xl9..., x j . 

THEOREM 2.5. rank SK = 2t — s9 where t is given by Lemma 2.2, and s 
is specified by Proposition 2.4. 

To apply Theorem 2.5, we must find xl9 . . . , xt9 a l 5 . . . , at and then 
compute the appropriate power residue symbols. [7] shows how to find 
xl9..., xt. On the other hand, finding a basis {cKaj),..., cl(a,)} of S£} can 
be very difficult. However it can be shown that a set of generators of 
S£} is sufficient for the calculations, and the ideal classes of the prime ideals 
that ramify in K/F frequently comprise such a generating set. Furthermore 
it can be shown that the power residue symbol calculations, which involve 
arithmetic in K, can be replaced by cubic Hubert symbol computations 
that involve only arithmetic in F. 

At this point we could summarize the above results in a theorem which 
would explicitly state how to compute rank SK for a cyclic cubic extension 
K of 0 ( 0 j i-e->we could specify explicitly the x/s, the generators of S{^\ and 
the appropriate Hubert symbols. However such a theorem would be 
very lengthy, and we defer its presentation to another time. In the remain­
ing two sections of this paper, we present results analogous to Theorem 
2.5 for pure cubic extensions of Q and for cyclic cubic extensions of Q. 

3. Pure cubic fields. Let A: be a pure cubic field; i.e., k = Q(ft1/3), where 
n is a rational integer. (Note that n can be chosen to be a positive, cube-
free integer.) Let K = k- F9 where F = Q(0- Then K is a cyclic cubic 
extension of F, and hence the results of §2 apply to K. So rank SK = It — s, 
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where t is given by Lemma 2.2, and s is given by Proposition 2.4. Let o 
be a generator of Gal(K//c), and let Sk denote the Sylow 3-subgroup of 
the ideal class group of k. Then Sk = {aeSK\aa = a}, and furthermore 
SK ^ Sk x S^, where S^ = {aeSK\aa = a'1}. It is now possible to 
apply some tricks of Kummer duality theory (cf. [6]) to find rankSk. 
The main result for pure cubic fields can be expressed as follows. 

THEOREM 3.1. Let k = Q(n1/3) =j= Q, where n is a rational integer. Let 
F = Q(0, where £ is a primitive cube root of unity, and let K = k- F. 
Then rank Sk = t — sl9 where t is given by Lemma 2.2, and sx is the rank of 
a certain matrix all of whose elements can be determined by Hubert symbol 
computations in F. 

REMARK. It is possible to specify explicitly the elements in the matrix 
that is mentioned in Theorem 3.1. We shall do this in another paper. 

The following theorem, which bears a striking resemblance to Theorem 
1.1, is a special case of Theorem 3.1. 

THEOREM 3.2. Let k = Q(n1/3) =/= Q, where n = 3e°qll... qef, each qt 

is a rational prime = — 1 (mod 3), and each et is a nonnegative rational 
integer. Let d denote the number of totally ramified primes in k/Q. Then 

rank Sk = d — 1 if each qt = — 1 (mod 9) 

= d — 2 if some qt = 2 or 5 (mod 9). 

4. Cyclic cubic extensions of Q. Let k be a cyclic cubic extension of Q. 
Let F = Q(C) a n d K = k- F. The results of §2 apply to X, and again 
certain tricks of Kummer duality theory can be used to find rank Sk. 
The main result is given below. 

THEOREM 4.1. Let k be a cyclic cubic extension of Q. Then rankSk = 
2(d — 1) — s2, where d is the number of ramified primes in k/Q, and s2 

is the rank of a certain matrix all of whose elements can be determined by 
Hubert symbol computations in Q(Q, where ( is a primitive cube root of 
unity. 

REMARK. In another paper we shall specify explicitly the elements of 
the matrix that is mentioned in Theorem 4.1. 
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