APPELL POLYNOMIALS WHOSE GENERATING FUNCTION IS MEROMORPHIC ON ITS CIRCLE OF CONVERGENCE

BY J. D. BUCKHOLTZ

Communicated by W. T. Martin, October 19, 1972

Let $\Phi(z) = \sum_{0}^{\infty} \beta_{j} z^{j}$ have radius of convergence $r (0 < r < \infty)$ and no singularities other than poles on the circle |z| = r. The Appell polynomials generated by Φ are given by

$$\pi_k(z) = \sum_{j=0}^k \beta_{k-j} z^j / j!, \qquad k = 0, 1, 2, \cdots.$$

An entire function g is said to possess a $\{\pi_k\}$ expansion if there is a complex sequence $\{h_k\}_0^{\infty}$ such that

$$(1) \sum_{k=0}^{\infty} h_k \pi_k(z)$$

converges uniformly on compact sets to g(z). In this note we show that the family of functions which have $\{\pi_k\}$ expansions is completely determined by the poles of Φ on |z| = r together with the zeros of Φ in the closed disk $|z| \le r$.

Set $\Phi(z) = T(z)\phi_1(z)/P(z)$, where ϕ_1 is analytic and zero-free in $|z| \le r$ and T and P are polynomials whose zeros correspond respectively to the zeros of Φ in $|z| \le r$ and the poles of Φ on |z| = r. Let

$$P(z) = \prod_{q=1}^{\lambda} (1 - \alpha_q z)^{m(q)},$$

where m(q) denotes the multiplicity of the pole α_q^{-1} of Φ , and let $m = \max m(q)$, $1 \le q \le \lambda$. It is relatively easy to characterize those complex sequences $\{h_k\}_0^{\infty}$ for which (1) converges. The following result was proved in [2], and can also be obtained as a special case of a theorem of W. T. Martin [3].

Theorem A. If $\{h_k\}_0^{\infty}$ is a complex sequence, then the following are equivalent:

(i) each of the series

$$\sum_{k=0}^{\infty} \binom{k+m(q)-1}{m(q)-1} h_k \alpha_q^k, \qquad 1 \leq q \leq \lambda,$$

converges;

AMS (MOS) subject classifications (1970). Primary 30A62; Secondary 30A16. Key words and phrases. Appell polynomials, polynomial expansions.

- (ii) the series (1) converges for all z in some infinite bounded set;
- (iii) the series (1) converges for all z, the convergence being uniform on every compact set.

The problem of determining which entire functions g possess $\{\pi_k\}$ expansions is considerably more intricate, and the solution of this problem is our main result. Let

$$Q(z) = \prod_{q=1}^{\lambda} \{1 - \alpha_q z\}^{\min\{m(q), m-1\}},$$

let D denote the derivative operator, and let \mathcal{F} denote the space of entire functions f such that

$$\lim_{n \to \infty} r^{-n}(D^n f)(0) = 0 \quad \text{and} \quad \lim_{n \to \infty} n^{m-1} r^{-n}(Q(D)D^n f)(0) = 0.$$

If m = 1 (Φ has only simple poles on |z| = r), the second condition reduces to the first, and \mathscr{F} is the collection of all f such that $f^{(n)}(0) = o(r^n)$, $n \to \infty$. In general, $f^{(n)}(0) = o(r^n)$ is a necessary condition that f belong to \mathscr{F} , and the condition

$$f^{(n)}(0) = o(r^n/n^{m-1}), \qquad n \to \infty,$$

is sufficient. For each $k \ge 0$, let L_k denote the linear functional given by

$$L_k(f) = \sum_{j=k}^{\infty} a_{j-k} f^{(j)}(0),$$

where $\sum a_j z^j$ is the power series for $T(z)/\Phi(z)$. It was shown in [2] that, if Φ is zero-free in $|z| \leq r$, then g possesses a $\{\pi_k\}$ expansion if and only if g belongs to \mathscr{F} . The expansion in this case is unique, the coefficient sequence $\{h_k\}_0^{\infty}$ being given by $\{L_k(g)\}_0^{\infty}$ (provided one takes $T(z) \equiv 1$). There is an easy and beautiful extension of this result to the general case.

THEOREM B. A necessary and sufficient condition that an entire function g possess a $\{\pi_k\}$ expansion is that the differential equation T(D)f = g have a solution f which belongs to \mathcal{F} . If

$$g(z) = \sum_{k=0}^{\infty} h_k \pi_k(z)$$

for all z, then there is an $f \in \mathcal{F}$ such that T(D)f = g and $h_k = L_k(f)$, $k = 0, 1, 2, \dots$. Conversely, if $f \in \mathcal{F}$ and g = T(D)f, then

(2)
$$g(z) = \sum_{k=0}^{\infty} L_k(f)\pi_k(z)$$

for all z, the convergence being uniform on every compact set.

PROOF. Let $\{p_k\}_0^{\infty}$ denote the Appell polynomial sequence generated by $\phi(z) = \Phi(z)/T(z)$; since ϕ is zero-free in $|z| \le r$, all the results obtained in [2] apply. Suppose that

$$g(z) = \sum_{k=0}^{\infty} h_k \pi_k(z)$$

for all z and set

$$f(z) = \sum_{k=0}^{\infty} h_k p_k(z).$$

It follows from Theorem A that the convergence of (3) is equivalent to that of (4), and is uniform on compact sets in both cases. Verify that $\pi_k = T(D)p_k$ and apply the operator T(D) to both sides of (4). This yields

$$(T(D)f)(z) = \sum_{k=0}^{\infty} h_k \pi_k(z) = g(z).$$

From (4) and the remark preceding Theorem B, it follows that $f \in \mathcal{F}$ and that $h_k = L_k(f), k = 0, 1, 2, \cdots$

Suppose now that $f \in \mathcal{F}$ and g = T(D)f. From the remark preceding Theorem B, we have

(5)
$$f(z) = \sum_{k=0}^{\infty} L_k(f) p_k(z).$$

Applying T(D) to both sides of (5), we obtain (2), and this completes the proof.

Unless Φ is zero-free in |z| < r, the $\{\pi_k\}$ expansions are not unique. Let \mathscr{H} denote the space of all sequences $\{h_k\}_0^{\infty}$ such that

$$\sum_{k=0}^{\infty} h_k \pi_k(z) = 0$$

for all z (equivalently, for all z in some infinite bounded set). Set $T(z) = T_0(z)T_1(z)$, where T_0 is a polynomial with no zero outside the disk |z| < r and T_1 is a polynomial with no zero off the circle |z| = r. Let \mathcal{H}_0 denote the space of all sequences $\{h_k\}_0^\infty$ such that

$$u(z) = \sum_{k=0}^{\infty} h_k z^k / k!$$

satisfies the differential equation $T_0(D)u = 0$. It is known (and easy to prove) [1, p. 25] that $\mathcal{H}_0 \subseteq \mathcal{H}$. We shall prove that $\mathcal{H} = \mathcal{H}_0$ by showing that the dimension of \mathcal{H} does not exceed the degree of T_0 , which is the dimension of \mathcal{H}_0 . This approach is necessary since our technique leads to a somewhat different characterization of \mathcal{H} .

THEOREM C. $\mathcal{H} = \mathcal{H}_0$.

PROOF. Suppose $\{h_k\}_0^{\infty}$ belongs to \mathcal{H} . It follows from the argument used to prove Theorem B that the function $f(z) = \sum_{k=0}^{\infty} h_k p_k(z)$ belongs to \mathscr{F} and satisfies T(D) f = 0. Set $F = T_0(D) f$. Then

$$0 = T(D)f = T_1(D)\{T_0(D)f\} = T_1(D)F.$$

Since $f \in \mathcal{F}$, it follows that $F \in \mathcal{F}$; therefore F satisfies

(6)
$$F^{(n)}(0) = o(r^n), \qquad n \to \infty.$$

The solutions of $T_1(D)F = 0$ are well known, and the only one which satisfies (6) is $F \equiv 0$. Therefore $T_0(D)f = 0$. The dimension of the solution space of $T_0(D)f = 0$ is equal to the degree of T_0 , and to complete the proof, we need only show that the linear mapping which takes the sequence $\{h_k\}_0^\infty$ in \mathcal{H} onto the function $\sum h_k p_k(z)$ is 1-1. This is equivalent to showing that $\sum h_k p_k(z) = 0$ for all z implies $h_k = 0, k = 0, 1, 2, \cdots$. This was established in [2]; therefore the proof is complete.

REFERENCES

- 1. R. P. Boas, Jr. and R. C. Buck, *Polynomial expansions of analytic functions*, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Band 19, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 29 #218.
- J. D. Buckholtz, Appell polynomial expansions and biorthogonal expansions in Banach spaces, Trans. Amer. Math. Soc. (to appear).
 W. T. Martin, On expansions in terms of a certain general class of functions, Amer. J.
- Math. 58 (1936), 407-420.
- 4. G. A. Read, Expansions in series of polynomials, J. London Math. Soc. 43 (1968), 655-657. MR **37** # 4273.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506