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Let <I>(z) = YJO PjzJ have radius of convergence r (0 < r < oo) and no 
singularities other than poles on the circle \z\ = r. The Appell polynomials 
generated by $ are given by 

nk(z)= tPu-j**ir-> * = 0,1,2,- . . . 
j=o 

An entire function g is said to possess a {nk} expansion if there is a complex 
sequence {/ik}o such that 

00 

(i) E M*(*) 
fc = 0 

converges uniformly on compact sets to g(z). In this note we show that the 
family of functions which have {nk} expansions is completely determined 
by the poles of O on \z\ = r together with the zeros of <D in the closed disk 
\z\ g r. 

Set 0>(z) = T(z)^)l(z)jP(z\ where c/)1 is analytic and zero-free in \z\ ^ r 
and Tand P are polynomials whose zeros correspond respectively to the 
zeros of <I> in \z\ ^ r and the poles of <I> on \z\ = r. Let 

p(z) = n o - v r ^ 
where m(q) denotes the multiplicity of the pole a"1 of O, and let 
m = max m(q\ 1 ^ q ^ X. It is relatively easy to characterize those 
complex sequences {/îk}o for which (1) converges. The following result 
was proved in [2], and can also be obtained as a special case of a theorem 
ofW. T. Martin [3]. 

THEOREM A. If {hk}Q is a complex sequence, then the following are 
equivalent : 

(i) each of the series 

« Ik + m(q) - 1\ , k ^ ^ a 

converges ; 
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(ii) the series (1) converges for all z in some infinite bounded set; 
(iii) the series (1) converges for all z, the convergence being uniform on 

every compact set. 

The problem of determining which entire functions g possess {nk} 
expansions is considerably more intricate, and the solution of this problem 
is our main result. Let 

Q(Z) = Y\ {1 _ a Z}min{»(«),«-1>9 

let D denote the derivative operator, and let $F denote the space of entire 
functions ƒ such that 

lim r-"(Dnf)(0) = 0 and lim wm" Vn(Q(D)Dy)(0) = 0. 
n-* oo n-* oo 

If ra = 1 (O has only simple poles on \z\ = r), the second condition reduces 
to the first, and 3F is the collection of all/such that /(M)(0) = o(rn\ n -> oo. 
In general, f(n)(0) = o(rn) is a necessary condition that ƒ belong to J*, 
and the condition 

ƒ(«)(()) = o(r7nm_1), n-> oo, 

is sufficient. For each k ^ 0, let Lk denote the linear functional given by 

W ) = Z ^-fc/
(j)(0), 

where Z ö j z J ls the power series for T(z)/Q)(z). It was shown in [2] that, 
if O is zero-free in \z\ ^ r, then g possesses a {71J expansion if and only if 
g belongs to êF. The expansion in this case is unique, the coefficient 
sequence {/ik}o being given by {Lk{g)}^ (provided one takes T(z) =1) . 
There is an easy and beautiful extension of this result to the general case. 

THEOREM B. A necessary and sufficient condition that an entire function 
g possess a {nk} expansion is that the differential equation T(D)f = g have 
a solution f which belongs to 3F. If 

00 

g(z) = X MfcOO 
fc = 0 

for all z, then there is an fe^F such that T(D)f = g and hk = Lk(f\ 
k = 0,1,2. • • •. Conversely, if f e!F and g = T(D)f then 

00 

(2) g(z) = X Lk(f)nk{z) 
k = 0 

for all z, the convergence being uniform on every compact set. 
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PROOF. Let {pk}o denote the Appell polynomial sequence generated 
by (p(z) = <I> (z)/T(z); since <j> is zero-free in \z\ = r, all the results obtained 
in [2] apply. Suppose that 

00 

(3) g(z) = I hknk(z) 
k = 0 

for all z and set 
00 

(4) m = i hkPk(Z). 
k = 0 

It follows from Theorem A that the convergence of (3) is equivalent to 
that of (4), and is uniform on compact sets in both cases. Verify that 
nk = T(D)pk and apply the operator T(D) to both sides of (4). This yields 

00 

(T(D)f)(z) = X hknk(z) = g(z). 
k = 0 

From (4) and the remark preceding Theorem B, it follows that ƒ e $F and 
thatfefc = Lk(f),k = 0,1,2,-... 

Suppose now that ƒ e êF and g = T(D)f. From the remark preceding 
Theorem B, we have 

00 

(5) m = I Lk(f)pk(z). 
k = 0 

Applying T(D) to both sides of (5), we obtain (2), and this completes the 
proof. 

Unless O is zero-free in \z\ < r, the {nk} expansions are not unique. 
Let Jf7 denote the space of all sequences {/ik}o such that 

00 

Z MfcOO = o 
k=0 

for all z (equivalently, for all z in some infinite bounded set). Set 
T(z) = TçfâT^z), where T0 is a polynomial with no zero outside the 
disk \z\ < r and Tx is a polynomial with no zero off the circle \z\ — r. 
Let Jf0 denote the space of all sequences {hk}o such that 

00 

H(Z)= I hkZ
k/k\ 

fc = 0 

satisfies the differential equation T0(D)u = 0. It is known (and easy to 
prove) [1, p. 25] that tf 0 ç 2ÏÏ. We shall prove that 3tf = Jf 0 by showing 
that the dimension of Jf does not exceed the degree of T0, which is the 
dimension of Jf 0. This approach is necessary since our technique leads 
to a somewhat different characterization of Jf. 
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THEOREM C. tf = J^0-

PROOF. Suppose {/ifc}o belongs to Jj?. It follows from the argument 
used to prove Theorem B that the function ƒ (z) = ^£°= 0 hkpk(z) belongs 
to & and satisfies T{D)f = 0. Set F = T0{D)f. Then 

0 = T(D)f = T^iUD)/} = TX{D)F. 

Since ƒ e 2F, it follows that F e 3F ; therefore F satisfies 

(6) F{n)(0) = o{r% n -> oo. 

The solutions of T1(D)F = 0 are well known, and the only one which 
satisfies (6) is F = 0. Therefore T0(D)f = 0. The dimension of the solution 
space of T0(D)f = 0 is equal to the degree of T0, and to complete the 
proof, we need only show that the linear mapping which takes the sequence 
{/zk}o in 3tf onto the function £/^pfc(z) is 1-1. This is equivalent to 
showing that £ hkpk(z) = 0 for all z implies hk = 0, k = 0,1,2, • • •. This 
was established in [2] ; therefore the proof is complete. 
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