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0. Introduction. This note announces some new methods in algebraic 
topology, based on the results of [1], [2] and [3]. The relative lifting prob­
lem [5, p. 415] is fundamental to that subject. It includes the extension 
problem, the retraction problem, the lifting problem, the section problem, 
the relative section problem and the computation of [X, Y] problem, 
among its particular cases. These problems (excluding the last one) are 
usually taken to concern just the existence of extensions, retractions, etc. ; 
we use the terms in the wider sense, to include both the existence question 
and the homotopy classification question, for the respective extensions, 
retractions, etc. We will : 

(i) prove that many cases of the above problems (including the computa­
tion of the absolute and relative cohomology groups of the total space 
of a fibration, and the computation of certain homotopy groups) are 
equivalent to "parallel problems", involving the restricted fibered map­
ping projection (pq;a); 

(ii) give some examples of solutions of parallel problems. Our solutions 
include one lifting problem and two extension problems. The extension 
results have some immediate consequences; they give new derivations for 
the exact cohomology sequences of Serre and Wang. Gysin's sequence is 
derived separately. Future papers will discuss these and other applications 
in detail. 

Our argument is valid in several convenient categories, including the 
category of ï-spaces [4], [2], [7] and the category of quasi-topological 
spaces [6], [1], [2]. This category of I-spaces, for a definition see [2, p. 276], 
contains the usual category of Hausdorff fc-spaces (= compactly generated 
spaces = Kelley spaces) as a subcategory. 

1. Preliminaries. « will be used to denote bijections and isomor­
phisms ; ^ to denote homeomorphisms. We outline the concepts from 
[I], [2] and [3] that are required. If X and Y are spaces, then Jt(X9 Y) will 
denote the space of maps of X into Y; if ƒ e M{X, Y) then J((X, Y; ƒ) will 
denote the path component of ƒ with the subspace topology. 
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Let B be a simply connected space. If p : X -» B and q : Y -• 2? are maps 
then/ : /? -> g will mean tha t / : X -• Y is a map such that qƒ = p. ̂ # (p, g) 
will denote the set of maps/ : p -> q, topologized as a subspace of J? (X, Y). 
Let Xb and 7b denote the fibres of p and q over a point b e £ . p n g : X n Y - > 
B and (pg): ( 17 ) -> 5 will denote the associated pullback map and 
the associated fibred mapping projection, respectively (their fibres 
over b are Xb x Yb axiAJt(Xb, Yh\ respectively). We recall the exponential 
law of maps : Ji(p |~l q, r) ^ M(p, (qr)). Ifq and r are fibrations, i.e. have the 
absolute covering homotopy property in the sense of the category used, 
then so is (qr). (qr) is a rather inconvenient fibration to work with, for its 
fibres are not in general path-connected. Let A denote the set of homotopy 
classes of maps Yb -• Zb, for a given choice of beB. (YZ; a) will denote 
the path component of (YZ) that contains a e A. Then (pq;a) = (pq)\ 
(YZ\a) is a fibration over B with path-connected fibres. The condition 
that %i(B) = 0 is not strictly necessary, the essential point is that B can 
be given a base point such that n^B) acts trivially on the path components 
of the distinguished fibre of (qr). 

2. Main theorems. Let/, geJt(p, q). We say that ƒ is homotopic to g over 
B if there is a homotopy H:f~ g such that HteJi(p,q\ for each te I. 
[p, q] will denote the set of such homotopy classes. 

THEOREM 1. If X is path-connected then there is a bisection [pflq,r] « 
[jaeA [p, (qr;a)l [ƒ] n> [g], defined by ƒ(*, y) = g(x)(y); p(x) = q(y). 

PROOF, [p Hq,r]^ [p, (qr)] « [jaeA [p, (qr ; a)]. 
This means that the lifting problem for pflq over r is equivalent to a set 

of lifting problems, for p over maps (qr ; a). 
Let B0 be a nonempty subspace of B. We define X0 = p~1(B0\ 

Y0 = q~x(B0l Z0 = r - 1(B0), p0 = p\X09q0 = q\Y0 and r0 = r\Z0. Let 
h e J((pç>, q0). *M(p, q)h will denote the space of all maps ƒ e Jt(p, q) such 
that f\X0 = h. We will say that ƒ is h-homotopic to g over B if there is a 
homotopy H:f ~ g, such that HteJ?(p,q)h, for each tel. [p,q]h will 
denote the set of such homotopy classes. Let u:p0r\q0 -* r0. If X0 is 
path-connected then the corresponding map v :p0 -> (g0

ro) takes X0 into a 
single path component (YZ ; a) of (YZ), thus giving a map w :p0 ~* (4oro ; #). 

THEOREM 2. /ƒ X is path-connected then there is a bijection 

[p n q, r]u « [p, (<?r ; a)]w, [ ƒ ] H> [g], 

defined byf(x,y) = g(x)(y);p(x) = q(y). 

PROOF. [pïlq9r]u « [Mgr)], « [p,(<F ;<*)]„,• 
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This asserts that the relative lifting problems, for the diagrams (i) and (ii), 
are equivalent. 

x0r\Y01?z0^z X0^(Y0Z0;a)^(YZ;a) 

(i) (Ü) (qr;a) 

XHY-
pnq 

- £ X -+£ 

3. Basic problems. 
(I) The lifting problem as a set of section problems. Let p = lB, and q and 

r be fibrations. It follows from Theorem 1 that [q, r] « [lBr~lg, r] « 
(Jae^ t^» (^r ' aH- Hence the lifting problem for one fibration over another 
is equivalent to a set of section problems, for fibrations (qr;a). 

(II) The computation of [7, K]. If Y and K are spaces then [7, K] will 
denote the set of homotopy classes of maps Y -• K. This can be taken 
either in the "free" sense or in the base-point preserving sense. Our 
method is relevant to the case where Y is the total space of a fibration 
q : Y -> B. Let t:K x B -> £ denote the usual projection. If ƒ : 7 -> X is a 
given map, then there is an associated map g:Y -+ K x B, g(y) = (/(y), 
g(y)), y G 7; now this carries over to homotopy classes giving [7, K] « [q91]. 
It follows from (I) that [7, X] « [jaeA [1B, (qt;a)]. 

Hence the computation of[Y, K] is equivalent to a set of section problems. 
In particular, (a) if K is an Eilenberg-Mac Lane space K(n, n\ the com­
putation ofHn(Y; n) corresponds to the solution of a set of section problems; 
(b) ifq is a Hopffibration (7 = Sn) then the computation ofnn(K) corresponds 
to the solution of a set of section problems. 

(III) The relative lifting problem as a relative section problem. Let 
q:Y-> B and r :Z -» B be given fibrations and B0 be a nonempty path-
connected subspace of B. If g:q0 -» r0 then (YZ;g) will denote the path 
component of (YZ) that contains the restrictions of g to the fibres over 
B0. If 1 denotes the identity on B0 then we take the composite 1 r\q0 = 
q0 -g> r0 and define h : 1 -> (g0r0 ; g) as the associated map. We will replace 
qby lBr\q and apply Theorem 2. It follows that the relative lifting problem 
for diagram (iii) is equivalent to a relative section problem for thefibration 
(qr ; g) (i.e. the relative lifting problem for diagram (iv)). 

^o "g* Zo 

(iü) (iv) 

->£ 

B01?(Y0Z0;g) 

B 

(YZ;g) 

\iqr;g) 

> B 
q h 

(IV) The extension problem. Let K be a given space. If/: 70 -> X is a 
given map then there is an associated map g:Y0 -+ K x B0, g(y) = 
(f(y\ q(y)\ ye Y0. Consider the relative lifting problem of diagram (iii) 
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above, with r replaced by the usual projection t:K x B -• B. The exten­
sion problemforfover Y0 a Y is equivalent to that relative lifting problem 
and hence to the corresponding relative section problem for (qt ; g). The 
retraction problem for Y0 c Y can, of course, be treated in this way. 

Notation. Let X and B be spaces with base points and p : X -> B be a 
base-point preserving map. [sec p] will denote the set of based homotopy 
classes of base-point preserving sections to p. 

(V) The relative cohomology of the total space of a fibration. We will 
now take B0 to be a single point, the base point of B ; F will denote the 
distinguished fibre for the fibration q. Let n be an abelian group. We take 
K to be the Eilenberg-Mac Lane space K(n9 n) and ƒ = 0 : F -» K(n, n) to 
be the constant map value zero. This map will be taken to be a base-point 
in (Y K(n9 n) x 2?;0), its path-component in (Y K(n9 n) x B). The ele­
ments of Hn(Y,F;n) are in one-to-one correspondence with the homotopy 
classes of extensions of 0 over Y; it follows via (IV) that they are in one-
to-one correspondence with the elements of [sec (qt; 0)]. 

4. Techniques for the solution of parallel problems. Some parallel 
problems are extremely difficult, others are relatively easy. We give a few 
solutions. They are not on the level of maximal interesting generality; 
our main concern is to emphasize the existence of the methods used. 
Example (ii) is a particular case of (I) above ; examples (i), (iii) and (iv) are 
cases of (V). 

(i) Serre's exact cohomology sequence. Consider the map f'\tV\q -> t, 
f'(u,y) = u; t(u) = q(y). It follows, via the exponential law, that there is 
a corresponding map ƒ :t -> (qt ; 0) ; the restriction of ƒ to the distinguished 
fibres is 

g : K(n, n) -• Jf(F, K(n, n) ; 0), g(a)(x) = a, a e K(n9 n\ xeF. 

It is easily shown that if F is (m — l)-connected, then g induces isomor­
phisms of homotopy groups in all dimensions ^ n — m + 1. 

PROPOSITION. Let B be a pointed CW-complex and pt: Xt -• B befibra-
tions with distinguished fibres Ft (i = 1 and 2). The pt will be assumed to be 
base-point preserving, ƒ': px -» p2 is a base-point preserving map, such that 
g = / | F 1 : F 1 ^ F 2 induces isomorphisms of homotopy groups in all 
dimensions ^ j . If the connectivity of B is ^ j then ƒ induces a bijection 
/* : [ secp 1 ]^ [ secp 2 ] . 

This proposition is a modification of [5, p. 418, Theorem 12]. 
Putting Pi = U p2 = (qt; 0) and assuming that the connectivity of B is 

^n — m, we see that ƒ induces a bijection/*: [sec t] -» [see (pt; 0)]. Now 
since [sect] « Hn(B;n\ [sec(pt;0)] « Hn(Y9F;n\ it follows that p*: 
Hn(B ; n) -» Hn(Y9 F : n) is an isomorphism. We use [5, p. 412, Theorem 1] 
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to eliminate the condition that B is a CW-complex; Serre's exact co­
homology sequence is then easily derived. 

This technique can be extended to cover other problems, the essential 
point is to find afibration px which "approximates" the given p2 = (pq\ a), 
in the sense of our proposition or the relative version of that proposition. 
We now give another such example. 

(ii) A lifting problem. Let G and n be abelian groups, m and n be positive 
integers, n ^ 2m — 1. Any map g:K(G, m) -» K(n, n) can be desuspended, 
i.e. there exists a map h:K(G, m + 1) -> K(n, n + 1) such that Qh ~ g. 
Let q denote the principal fibration, fibre K(G,m), induced by c:B-* 
K(G, m + 1). Let r denote the principal fibration, fibre K(n, n), induced by 
d:B-+K(n,n + 1). 

We define px to be the principal fibration, fibre K(n, n), induced by the 
map d — he: B -» K(n, n + 1). (YZ; g) will denote the path-component 
of g in {YZ); we take g as the base-point for the space (YZ ; g). If the con­
nectivity of B is > n — m, then px approximates to p2 = (qr; g), in the sense 
of the above proposition. The map px -> p2 is defined by attaching one 
path to the end of another. The following conditions are then equivalent : 

(a) There is a map q -» r, whose restriction to the distinguished fibres 
isg; 

(b) There is a base-point preserving section to (qr ; g) ; 
(c) There is a section to p1 ; 
(d) d ~ he. 

It follows that there is a lifting ofq over r if and only if there is a cohomology 
operation 6 e &(n, m + l;G,n + 1) such that 6([c]) = [d]. 

(iii) Wang's exact cohomology sequence. Let us assume that the fibration 
q : Y -> B has B = Sm. It follows from (V) above that the constant map 
Y -• K(n, n) value 0, corresponds to a distinguished section to (qt ; 0). Hence 
the exact homotopy sequence for (qt;0) splits and nm(Y K(n,n) x J5;0) 
is canonically isomorphic to nm(B) ® nm(Jt(F, K(n, n);0)). A section to 
(qt;0) is a map Sm-^ (Y K(n, n) x J3;0); it determines an element of 
nm(Y K(n, n) x B; 0) and the canonical projection gives a corresponding 
element of 

7im(^(F, K(n9 n); 0)) « T T 0 ( ^ ( F , QmK(7c, n))) « Hn~m(F, TT). 

It follows from (V) that Hn(Y, F;n) « Hn~m(F, n) ; Wang's exact sequence 
is easily derived. 

TTiis technique may be extended, in a modified form, to cover other prob­
lems about fibrations over H-cogroups [5, p. 39]. It may be used in problems 
concerning homotopy groups, as indicated in (II) (b) above. 

(iv) Gysin's exact cohomology sequence. We assume that the fibration 
q:Y-> B has distinguished fibre Sm. The fibration (qt;0) has distin-
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guished fibre Jt(Sm, K(n, n); 0), this space has the weak homotopy type 
of K(n, n) x K(it, n — m). Let tx :K(n, n — m) x B -> B,t2 :K(n, n + 1) x 
B -+ B denote the usual projections. The first stage in a Moore-Postnikov 
factorization of (qt; 0) involves a map g:(qt; 0) -* tt ; the fe-in variant of the 
second stage is a map h':K(n,n — m) x B -* K(n,n + 1). We define 
h : tx -> t2 by /i(x, fc) = (ft'(.x, b\ b\ x e K(n, n — m\beB. Let ƒ : t -> (qt; 0) 
denote the map defined in (i) above. There is a sequence of fibrations 

> t -*ƒ ( # ; 0) ->g t t -*h f2 ~V (#2 ; 0) -> • • • inducing • [sec t] ->/+ 

[sec(g£ ; 0)] - ^ [sec t j ->,,„, [sec t2] -y* [sec(gt2 ; 0)] -» • • •. Now [sec t] « 
Hn(B,n\ [sec(#,0)] « iF(Y,F;7i) (see (V) above), [sec f J » Hn-m(B,n) 
and [sec t2] » Hn+1(B,n). It follows that there is an exact sequence: 

• Hn(B, n) - Hn(Y9 F;n)-> Hn~m(B, n) - Hn+ \B, n) - • • •. 

5. Remark. "Ordinary" cohomology can be defined in terms of homo­
topy classes of maps into Eilenberg-Mac Lane spaces; a number of 
mathematicians have suggested that this is the best definition. The above 
results are consistent with this approach. More generally, our arguments 
fit nicely into a discussion of generalized cohomology, defined using a 
spectrum. 
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