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According to a theorem of A. Grothendieck [4] the Teichmüller space 
of a closed Riemann surface of genus p ^ 2 is the universal parameter 
space for holomorphic families of marked Riemann surfaces of genus p. 
In this note we offer a corresponding description for every finite-dimen­
sional Teichmüller space T(p,ri) and discuss the universal families 
n : F(p, n) -> T(p, n). Detailed proofs will be given elsewhere. 

1. The space Tip, n). Let X be the smooth (C00) oriented closed surface 
of genus p ^ 0, and let xu x2 , . . . be a sequence of distinct points on X. 
Set X0 = X, Xn = X\{xu..., x„}, n ^ l . Let Diff+ X be the group of 
orientation preserving diffeomorphisms of X, with the C00 topology. We 
define the subgroups 

Difî+ (X, n) = {ƒ G Diff- X ; f(Xn) = X„}, 

Gn = the path component of the identity in Diff+ (X, n). 

Next we form the space M of smooth conformai structures (= complex 
structures) on X, again with C00 topology. Diff+ X acts on M from the 
right by pullback. If the inequality 

(1) 2p - 2 + n > 0 

holds, then the group Gn acts freely, continuously, and properly (see [3]) 
with local sections, and we have a principal GM-fibre bundle. The base 
space M/Gn of this bundle is, by definition, the Teichmüller space T(p, n). 
It is well known that T(p, n) has a natural complex structure and can be 
imbedded in Cd as a bounded open contractible domain of holomorphy 
[2], d = 3p - 3 + n. 

2. «-pointed families. Suppose the integers p, n ^ 0 satisfy (1). An n-
pointed family (of closed Riemann surfaces of genus p) consists of a pair of 
complex manifolds V and B, a holomorphic map n : V -» B, and n holo­
morphic sections Sj.B -> F such that 

(i) 7i is a proper submersion, 
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(ii) 7c_1(t) is diffeomorphic to the closed surface X of genus p, for all t 
i n £ , 

(iii) the sections sl9...9sn are disjoint (i.e., s/t) ^ sk(t) for all t in B if 
J * k). 

Given the w-pointed family n : V -• £, set 
« 

F' = F \ (J range Sj. 

The restriction of n maps F' onto £, and 7r : K' -• B is a smooth fibre 
bundle with fibre Xn and structure group Diff+ (X, n). If the structure group 
of that bundle is reduced to the subgroup GM, we say that the family 
7i : V -> B is marked. In other words, an rc-pointed family is marked by 
choosing a homotopy basis on each "punctured fibre" n~1(t) n F in a 
manner that depends continuously on t. 

A map of marked (n-pointed) families is by definition a pair of holo­
morphic maps ƒ : Vi -> V2 and g:J5x -> B2 such that f (VI) = F2' and 
(ƒ', g) is a map of G„-bundles, where ƒ ' = ƒ\V[. 

THEOREM 1. There is a marked n-pointed family n : V(p, n) -• T(p, n) such 
that, for every marked n-pointed family n1:Vl -^ Bl9 there is a unique map 
of marked families 

V^Vfan) 
*\ ï n i 

Of course the universal property described in Theorem 1 uniquely 
determines both V(p9 n) and T(p, n) as complex manifolds. For n = 0, 
Theorem 1 reduces to Grothendieck's theorem [4]. The general case is 
proved by the same method. Topologically, % : V(p, n) -• T(p, n) is the 
G„-bundle with fibre X associated to the principal Gn-bundle M -> T(p, n) 
= M/Gn. The cross-sections of n are determined by the points xl9..., xn 

on X (which are fixed by G„), and n : V(p9 n)' -• T(p, n) is the associated 
bundle with fibre Xn. The "punctured" fibre space V(p9 n) is more familiar, 
and perhaps more natural, than V(p, n). Bers has shown [1] that T(p, n + 1) 
can be interpreted in a natural way as the holomorphic universal covering 
space of V(p, n)'. 

3. The modular group. Since the group Diff+(X, n) acts on M, and 
Gn is normal in Diff+ (X, n) the quotient group T(p, n) acts on T(p, n). 
T(p, n) is called the (Teichmüller) modular group. This group does not 
always act effectively on T(p, n); however, it acts also on the fibre space 
V(p9 n) and there it acts very effectively. 

THEOREM 2. T(p, n) acts on V(p, n) and T(p, n) as a group of holomorphic 
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automorphisms satisfying 

n(v • y) = n(v) • y for all v e V(p, n\ y e T(p, n). 

Further, if v -y = v for all v in some fixed fibre n~1(t0), then y = id in 
r(p,n). 

EXAMPLE. The modular group T(2,0) has in its center one nontrivial 
element y, of order two. y fixes every point of T(2,0) and therefore maps 
each fibre 7c_1(t) of V(2,0) onto itself. Each fibre is a closed Riemann 
surface of genus two, hence hyperelliptic, and y on each fibre is the hyper-
elliptic involution. Let T0 = {y, id} be the center of T(2,0). Then T(2,0)/r0 

= T(2,0) £ T(0,6), and 7(2,0)/T0 £ 7(0,6). The six cross-sections of 
n : 7(0,6) -» T(0,6) map T(0,6) onto the six sheets of the branch locus of 
the map from 7(2,0) onto 7(0,6). The modular groups T(l, 1) and T(l, 2) 
also have nontrivial centers which act trivially on T(l, 1) and T(l, 2), but 
which act on 7(1,1) and 7(1,2) by an involution on each fibre. 

4. Sections of n : 7(p, n) -» T(p, ri). John Hubbard has proved [5] that 
the map n : 7(p, 0) -• T(p, 0) has no holomorphic sections if p ^ 3 and 
exactly six sections if p = 2. For n ^ 1, the map 

7c:7(p,n)->T(p,n) 

has n holomorphic sections given, and it makes sense to ask whether n has 
a holomorphic section disjoint from the given ones (i.e., taking its values 
in 7(p, n)'). We conjecture that no such sections exist unless p = 1 and 
n = 1 or 2. For the case p = n = 1, we can prove that only the obvious 
sections exist. We formulate that fact as 

THEOREM 3. Let U = {zeC;Im(z) > 0} be the upper halfplane. Suppose 
ƒ : U -> C is a holomorphic function such that 

ƒ (z) ^ m + nz for all zeU9 all m,neZ. 

Then f(z) = a + bz9 where a and b are real and not both integers. 

Our proof of Theorem 3 follows the method of Hubbard in [5]. It would 
be interesting to have a direct proof. 

ADDED IN PROOF. After submitting this paper, the author learned that 
M. Engber proved a stronger form of Theorem 1 independently in his 
1972 Columbia thesis. 
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