HERMITIAN BANACH *-ALGEBRAS

BY T. W. PALMER¹

Communicated by B. Yood, January 3, 1972

We establish several new characterizations of hermitian Banach *-algebras among all Banach *-algebras. In particular we show that a Banach *-algebra is hermitian if and only if its Gelfand-Naimark pseudonorm is a Q-pseudo-norm. Much of the theory of hermitian Banach *-algebras can be derived directly from this fact (cf. [1]).

We establish our terminology and notation. A Banach *-algebra is a Banach algebra over the complex numbers together with a fixed involution denoted by *. No connection between the norm and involution is postulated. A Banach *-algebra is called hermitian iff the spectrum of each element $h = h^*$ in $\mathfrak A$ is contained in the real line.

A linear functional ω on a Banach *-algebra $\mathfrak A$ is called positive iff $\omega(a^*a) \ge 0$ for all $a \in \mathfrak{A}$. The left kernel \mathfrak{A}_{ω} of a positive linear functional ω on $\mathfrak A$ is the left ideal $\{a \in \mathfrak A : \omega(a^*a) = 0\}$. If ω is a positive linear functional on \mathfrak{A} and 1 is the minimum value of B such that

$$|\omega(a)|^2 \leq B\omega(a^*a) \quad \forall a \in \mathfrak{A},$$

then ω is called a state.

A pure state is an extreme point of the convex set, \mathfrak{A}_s^+ , of states. A *-representation of a Banach *-algebra A is an algebra homomorphism T of \mathfrak{A} into the algebra $[\mathfrak{H}]$ of all bounded linear operators on some Hilbert space \mathfrak{H} , such that $T_{a^*} = (T_a)^*$ for all $a \in \mathfrak{A}$. A B^* -pseudo-norm on a Banach *-algebra $\mathfrak A$ is a submultiplicative pseudo-norm (=seminorm) τ on $\mathfrak A$ such that $\tau(a^*a) = \tau(a)^2$ for all $a \in \mathfrak{A}$. On any Banach *-algebra \mathfrak{A} there is a maximum B^* -pseudo-norm γ which satisfies

$$\gamma(a) = \sup\{\|T_a\|: T \text{ is a *-representation of } \mathfrak{U}\}\$$
$$= \sup\{\omega(a^*a)^{1/2}: \omega \in \mathfrak{U}_s^+\}.$$

This pseudo-norm γ is called the Gelfand-Naimark pseudo-norm.

A pseudo-norm τ on an algebra $\mathfrak A$ is called a Q-pseudo-norm iff it is submultiplicative and satisfies any of the following equivalent conditions: (1) the set \mathfrak{A}_{qG} of quasi-regular elements in \mathfrak{A} is τ -open; (2) the set \mathfrak{A}_{qG} has nonempty τ -interior; (3) the spectral radius $\rho(a)$ of any element $a \in \mathfrak{A}$ equals $\lim_{n\to\infty} \tau(a^n)^{1/n}$; (4) there is some constant B such that $\rho(a) \leq B\tau(a)$ for all $a \in \mathfrak{A}$. It is well known (and easy to show) that any maximal modular left ideal is closed in any Q-pseudo-norm.

AMS 1969 subject classifications. Primary 4660.

Key words and phrases. Banach *-algebras, hermitian, involution, Gelfand-Naimark pseudo-norm, Q-pseudo-norm.

The research on this paper was partially supported by NSF research grant No. GP-28250.

A B^* -algebra is a Banach *-algebra in which the complete norm is a B^* -pseudo-norm (and hence equals the Gelfand-Naimark pseudo-norm). For any Banach *-algebra $\mathfrak A$ let $\mathfrak A^-$ be the completion of $\mathfrak A/\mathfrak A_R$ in the norm induced by γ where $\mathfrak A_R = \{a \in \mathfrak A: \gamma(a) = 0\}$. Let $\Phi: \mathfrak A \to \mathfrak A^-$ be the natural map. Then $\mathfrak A^-$ is a B^* -algebra and $(\Phi, \mathfrak A^-)$ is called the B^* -enveloping algebra of $\mathfrak A$. The states $\bar \omega$ of $\mathfrak A^-$ are in bijective correspondence to the states of $\mathfrak A$ under the map $\bar \omega \mapsto \bar \omega \circ \Phi$. Hence $\bar \omega$ is a pure state of $\mathfrak A^-$ iff $\bar \omega \circ \Phi$ is a pure state of $\mathfrak A$.

We need one less elementary fact. If $\mathfrak A$ is a B^* -algebra and $\mathfrak L$ is a closed left ideal in $\mathfrak A$ then $\mathfrak L = \bigcap \{\mathfrak A_\omega : \omega \text{ is a pure state of } \mathfrak A \text{ with } \mathfrak L \subseteq \mathfrak A_\omega \}$. For a proof see [3, 4.9.8], or [1, 5.4.5]. The same references may be consulted for further information on any of the concepts introduced above.

THEOREM. Let $\mathfrak A$ be a Banach *-algebra. The following are equivalent:

- (a) U is hermitian.
- (b) γ is a Q-pseudo-norm.
- (c) Every maximal modular left ideal in $\mathfrak A$ is γ -closed.
- (d) Every maximal modular left ideal in $\mathfrak A$ is the left kernel of some pure state of $\mathfrak A$.

PROOF. (a) \Rightarrow (b): This follows immediately from the ingenious elementary proof by V. Ptak [2] that $\rho(a) \leq \rho(a^*a)^{1/2} = \gamma(a)$ for all $a \in \mathfrak{A}$.

- (b) \Rightarrow (c): Well known and elementary.
- (c) \Rightarrow (d): Let \mathfrak{L} be a maximal modular left ideal and hence γ -closed. Let \mathfrak{L}^- be the closure of $\Phi(\mathfrak{L})$ in \mathfrak{U}^- . Then \mathfrak{L}^- is a proper closed ideal and hence there is some pure state $\overline{\omega}$ on \mathfrak{U}^- such that $\mathfrak{L}^- \subseteq \mathfrak{U}_{\omega}^-$. Thus $\mathfrak{L} \subseteq \mathfrak{U}_{\omega}$ where $\omega = \overline{\omega} \circ \Phi$. However by the maximality of \mathfrak{L} , $\mathfrak{L} = \mathfrak{U}_{\omega}$. (If we knew only that $\overline{\omega}$ were a state on \mathfrak{U}^- the usual argument would provide a pure state ω on \mathfrak{U} with $\mathfrak{L} = \mathfrak{U}_{\omega}$.)
- (d) \Rightarrow (a): Suppose there is an element $b \in \mathfrak{A}$ and a nonzero positive number t such that $t^{-1}b^*b$ is quasi-singular. Then either

$$\mathfrak{Q} = \{ta + ab^*b : a \in \mathfrak{A}\} \quad \text{or} \quad \{ta + b^*ba : a \in \mathfrak{A}\}$$

is a proper ideal. However the second ideal is just \mathfrak{L}^* so in either case \mathfrak{L} is a proper modular left ideal with $-t^{-1}b^*b$ as a right relative unit. Thus there is a maximal modular left ideal including \mathfrak{L} but not b^*b and hence a pure state ω such that $\mathfrak{L} \subseteq \mathfrak{U}_{\omega}$ but $\omega((b^*b)^*b^*b) > 0$. However this is impossible since

$$0 < \omega((b^*b)^*b^*b)$$

$$= (2t)^{-1} [\omega((tb + bb^*b)^*(tb + bb^*b))$$

$$- \omega((bb^*b)^*bb^*b) - t^2\omega(b^*b)] \le 0.$$

- REMARKS. (1) Notice that the proof (d) \Rightarrow (a) establishes that $\mathfrak A$ is symmetric. Thus this is another way to derive the Shirali-Ford theorem from Ptak's proof of Raikov's inequality: $\rho(a) \leq \rho(a^*a)^{1/2} = \gamma(a)$.
- (2) Many properties of hermitian Banach *-algebras hold for all *-algebras in which the Gelfand-Naimark pseudo-norm is a Q-pseudo-norm. The proofs are frequently distinctly easier than proofs starting from the hypothesis of a hermitian Banach *-algebra. The theory of hermitian Banach *-algebras is developed from this viewpoint in [1].
- (3) In particular if γ is a Q-pseudo-norm on a *-algebra $\mathfrak A$ with B^* enveloping algebra (Φ, \mathfrak{A}^-) then $\rho(a) = \lim_{n \to \infty} \gamma(a^n)^{1/n} = \rho(\Phi(a))$. Hence the convex hull of the spectrum of any element a in A agrees with the convex hull of the spectrum of $\Phi(a)$ in \mathfrak{A}^- . This provides a direct elementary proof (which avoids the result used to show (c) \Rightarrow (d)) that condition (b) of the theorem implies symmetry and hence implies (a).
- (4) Note that the proof (c) \Rightarrow (d) actually establishes that every γ -closed left ideal 2 in any *-algebra A equals

 $\bigcap \{\mathfrak{A}_{\omega} : \omega \text{ a pure state of } \mathfrak{A} \text{ with } \mathfrak{L} \subseteq \mathfrak{A}_{\omega} \}.$

BIBLIOGRAPHY

 T. W. Palmer, *-algebras (in preparation).
 V. Ptak, On the spectral radius in Banach algebras with involution, Bull. London Math. Soc. 2 (1970), 327–334.

3. C. E. Rickart, General theory of Banach algebras, The University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960, MR 22 # 5903.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403