p-ADIC CURVATURE AND A CONJECTURE OF SERRE

BY HOWARD GARLAND

Communicated by H. Bass, October 7, 1971

1. In this note we announce a vanishing theorem for the cohomology of discrete subgroups of p-adic groups. The methods and results bear a striking analogy with the real case (see Matsushima [4]). In particular, we define "p-adic curvature" for the p-adic symmetric spaces of Bruhat-Tits (see [1]). As in the real case, we then reduce the proof of our vanishing theorem to the assertion that the minimum eigenvalues of certain p-adic curvature transformations are sufficiently large. This last condition can then be verified for "sufficiently large" residue class fields.

Before giving a more detailed description of our results we introduce some notation. Thus let Z denote the ring of rational integers and Q, R, and C the fields of rational, real and complex numbers, respectively. For a prime p, Q_p will denote the p-adic completion of Q. More generally k_v will denote a nondiscrete, totally disconnected, and locally compact (commutative) field.

Let G denote a simply-connected, linear algebraic group defined and simple over k_v and let G_{k_v} denote the k_v -rational points of G. Let V_Q denote a finite-dimensional vector space over Q, Γ an abstract group, and $\rho:\Gamma\to \operatorname{Aut} V_Q$ a representation. Let $H^i(\Gamma,\rho)$ denote the ith Eilenberg-Mac Lane group of Γ with respect to ρ . If V=Q, and ρ is the trivial representation we write $H^i(\Gamma,Q)$ in place of $H^i(\Gamma,\rho)$. By a uniform lattice in G_{k_v} we mean a discrete subgroup $\Gamma\subset G_{k_v}$ such that G_{k_v}/Γ is compact.

THEOREM 1. For every integer l, there is an integer N(l) such that if the residue class field of k_v has at least N(l) elements, if $\Gamma \subset G_{k_v}$ is a uniform lattice, and if $\rho: \Gamma \to \operatorname{Aut} V_{\mathbf{Q}}$ is a finite-dimensional representation such that $\rho(\Gamma)$ is contained in the orthogonal group of some positive-definite quadratic form on $V_{\mathbf{Q}}$, then $H^i(\Gamma, \rho) = 0$ for 0 < i < l. In particular, $H^i(\Gamma, \mathbf{Q}) = 0$ for 0 < i < l.

Except for our restriction on the residue class field, this theorem answers a question raised by J.-P. Serre for the trivial representation. It seems likely that sharper estimates for the minimum eigenvalues of p-adic curvature will enable one to eliminate the restriction on the residue class field. For nontrivial ρ , we have had to introduce the additional restriction that $\rho(\Gamma)$ is contained in the orthogonal group of a positive-definite form on $V_{\mathbf{Q}}$. Serre has conjectured that if ρ is obtained from a representation of $G_{k_{\nu}}$ in

AMS 1970 subject classifications. Primary 20E40, 20G10, 20G25.

 $V_{\mathbf{Q}} \otimes_{\mathbf{Q}} k_v$, then this additional restriction is unnecessary. Incidentally, Serre observed that $H^i(\Gamma, \rho) = 0$ for i > l. For i = l we have the following result (also observed by Borel and Serre):

THEOREM 2. If Γ is a torsion-free lattice in G_{k_v} , then $\dim_{\mathbf{Q}} H^l(\Gamma, \mathbf{Q})$ = multiplicity of the Steinberg representation in $L^2(G_{k_v}/\Gamma)$.

(See Shalika [6] for the definition of the Steinberg representation in the Chevalley case—one must make the appropriate translation from the adjoint group to the simply-connected group.) Our main theorem (Theorem 1) together with Theorem 2 yields a partial *p*-adic analogue of the result in Schmid [5].

2. An indication of the proof. Let $\Gamma \subseteq G_{k_v}$ be a uniform lattice. For simplicity, assume Γ is torsion-free and ρ is the trivial representation (so $V_Q = Q$). Let \mathscr{T} be the Bruhat-Tits complex associated with G_{k_v} (see [1]). Then \mathscr{T} is a simplicial complex and is contractible. G_{k_v} acts on \mathscr{T} as a group of simplicial transformations (and we make the convention that G_{k_v} acts to the left). The action of Γ is then properly discontinuous and fixed-point free. Hence, it follows that

$$(2.1) Hi(\Gamma, \mathbf{Q}) \cong Hi(\Gamma \backslash \mathcal{F}, \mathbf{Q}).$$

Since $\Gamma \setminus G_{k_v}$ is compact, one knows that $\Gamma \setminus \mathcal{F}$ is a finite complex which for simplicity, we assume to be a simplicial.

Following Eckmann and Hodge, we describe a "harmonic theory" for the Q-cochains of a finite simplicial complex \mathscr{G} . First, for each geometric simplex σ of \mathscr{G} , fix an oriented simplex $\hat{\sigma}$ corresponding to σ . By a Riemannian metric on \mathscr{G} we will mean a function from the geometric simplices to the positive real numbers. We fix a Riemannian metric λ on \mathscr{G} , and assume λ is Q-valued. Let f and g be oriented g-cochains on \mathscr{G} with values in g. We set

 $f, g) = \sum_{\hat{\sigma}} f(\hat{\sigma})g(\hat{\sigma})\lambda(\sigma),$

where the sum is over all geometric q-simplices σ of \mathscr{S} . We let C^q denote the oriented q-cochains of \mathscr{S} with values in \mathbf{Q} . Then (,) defines a positive-definite inner product on C^q . Let $d:C^q\to C^{q+1}$ denote the simplicial coboundary. We let $\delta:C^q\to C^{q-1}$ denote the adjoint of d, with respect to (,) and we set $\Delta=d\delta+\delta d$. Since (,) is positive-definite, it is easy to see that, for $f\in C^q$,

$$d\delta f = 0 \text{ implies } \delta f = 0,$$

$$\delta df = 0 \text{ implies } df = 0,$$

$$\Delta f = 0 \text{ implies } df = 0 \text{ and } \delta f = 0.$$

We let $H^q \subset C^q$ be the kernel of Δ (and we call an element of H^q a harmonic cochain). From (2.2) it is elementary to prove (see Kostant [3]):

PROPOSITION (HODGE DECOMPOSITION). C^q has (relative to (,)) an orthogonal direct sum decomposition

$$C^q = H^q \oplus dC^{q-1} \oplus \delta C^{q+1}.$$

It follows that $H^q \cong H^q(\mathcal{S}, \mathbf{Q})$. Thus to prove $H^q(\mathcal{S}, \mathbf{Q}) = 0$, it suffices to prove a vanishing theorem for H^q . Now for real locally symmetric spaces, Matsushima has reduced the study of harmonic forms to the computation of the minimum eigenvalues of certain curvature transformations (see [4]). By analogy, we might hope that we can reduce the study of H^q to the computation of the minimum eigenvalue of certain combinatorial curvature transformations. Indeed, for $\mathcal{S} = \Gamma \backslash \mathcal{T}$, we can do exactly that for suitably defined curvature transformations. We can then estimate the minimum eigenvalue well enough to prove Theorem 1.

Presently we shall define our curvature transformation for q < l (for an arbitrary finite simplicial complex with Riemannian metric). First we make some preliminary definitions. By the unit sphere Σ about a vertex σ in \mathcal{S} , we will mean the boundary of the star of σ . Now for q > 0, every q-simplex τ of \mathcal{S} , having σ as a vertex, determines a (q-1)-simplex τ' of Σ . We set $\lambda'(\tau') = \lambda(\tau)$; then λ' is a Riemannian metric on Σ . We let d'denote the simplicial coboundary on Σ and δ' the adjoint of d' (with respect to λ'). Then for q < l our curvature transformation (at σ) is just $\delta'd'$ acting on the space of **O**-valued q-cochains of Σ (orthogonal to the constant cochains if q = 1).

For example, if $G_{k_v} = SL_3(k_v)$, and F denotes the residue class field of k_v , then every unit sphere Σ in $\Gamma \backslash \mathcal{F}$ is isomorphic as a simplicial complex to Σ_0 , which we now define. Let F^3 denote the three-dimensional vector space over F. The set of vertices of Σ_0 will be the set of all lines and planes (containing the origin) in F^3 . Two vertices span a one-simplex (Σ_0 is onedimensional) if and only if one is a line, the other a plane, and the line is contained in the plane. We may take λ' to be identically one. In this case O. Rothaus showed me the eigenvalues of $\delta'd'$. They are 0, 2, 1 $\pm q^{1/2}/(q+1)$, where q is the cardinality of F. For general rank 2 groups G, the needed computation is contained in Feit-Higman [2]. One can also use the generators and relations of the Hecke algebra. Finally, the general case is handled by an induction argument, starting with the Feit-Higman result.

REFERENCES

- F. Bruhat and J. Tits, Groupes algébriques simple sur un corps local, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 23-36. MR 37 #6396.
 W. Feit and G. Higman, The nonexistence of certain generalized polygons, J. Algebra
- 1 (1964), 114-131. MR 30 #1189.

 3. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387. MR 26 #265.
- 4. Y. Matsushima, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka Math. J. 14 (1962), 1–20. MR 25 # 4549.
 - 5. W. Schmid, On a conjecture of Langlands, Ann. of Math. (2) 93 (1971), 1-42.
- 6. J. A. Shalika, On the space of cusp forms of a p-adic Chevalley group, Ann. of Math. (2) 92 (1970), 262-278.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14850

Current address: DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, COLUMBIA, New York, 10027.