A TOPOLOGICAL REEB-MILNOR-ROSEN THEOREM AND CHARACTERIZATIONS OF MANIFOLDS

BY LOUIS F. McAULEY1

Communicated by Steve Armentrout, July 8, 1971

Introduction. The following theorem is due to Reeb [9] (1952) and Milnor [7] (1956). All manifolds are differentiable (C^{∞}) .

THEOREM A. Suppose that M is a compact manifold and that f is a differentiable real valued function on M with exactly two critical points each of which is nondegenerate. Then M is homeomorphic to a sphere.

If each critical point is degenerate, then the conclusion that M is homeomorphic to a sphere is true. This was proved by Milnor [8] (1959) and by Rosen [10] (1960).

With the aid of some techniques of Dyer and Hamstrom, recent results of Kirby, Edwards, and Cernavskii on spaces of homeomorphism on manifolds, and a selection theorem of Michael it is not difficult to establish the following topological version of Theorem A.

THEOREM B. Suppose that M is a continuum (compact connected metric space) and that $f: M \Rightarrow I = [0, 1]$ is a (continuous) mapping. Furthermore, $f^{-1}(0) = a$ (point), $f^{-1}(1) = b$ (point), $f|(M - \{a, b\})$ is completely regular, and $f^{-1}(x)$ is homeomorphic to an n-sphere S^n for each $x \in (0, 1)$. Then M is homeomorphic to S^{n+1} .

OUTLINE OF A PROOF. Let $X = M - \{a, b\}$. For each $p \in (0, 1)$, let G_p denote the space of all homeomorphisms of S^n onto G_p with the usual metric (equivalently, the compact open topology). See, for example, [5] for details. The collection G of all G_p has the properties (1) G^* (the union of the elements of G) is a complete metric space, (2) each $G_p \in G$ is LC° (in the homotopy sense) by [1], [3], and (3) G is equi-LC°. It follows from [2, 4, Theorems 4, 5, and the remark p. 113] that $M - \{a, b\} \cong S^n \times (0, 1)$. Consequently, $M \cong S^{n+1}$.

REMARK. The condition that $f^{-1}(p) \cong S^n$ in Theorem B is a natural requirement since it follows from the hypothesis of Theorem A that the inverse of each point under f is a manifold, in particular, a sphere of some fixed dimension n.

Characterization of manifolds. Similar characterizations of manifolds are possible although proofs are somewhat complicated by the existence of more than *two* topological "critical" points and "levels." Rather general

AMS 1969 subject classifications. Primary 5428, 5478, 5460, 5560, 5731, 5701.

¹ Research supported in part by NSF Grant GP 19589.

theorems will be published elsewhere with sufficient details. The following special case illustrates the techniques involved and a simple but crucial idea which allows us to prove analogues of Theorem B for manifolds.

THEOREM C. Suppose that M is a continuum and that $f: M \Rightarrow [0,1]$ is a mapping such that $(1) f^{-1}(0) = a$ (point), $(2) f^{-1}(1) = b$ (point), $(3) f^{-1}(\frac{1}{4}) \cong f^{-1}(\frac{3}{4}) \cong a$ figure eight (two circles with exactly one common point), (4) for $0 < x < \frac{1}{4}$ or $\frac{3}{4} < x < 1$, $f^{-1}(x) \cong a$ circle, (5) for $\frac{1}{4} < x < \frac{3}{4}$, $f^{-1}(x) \cong a$ pair of disjoint circles, and (6) for 0 < x < 1, there is a "triangulation" of $f^{-1}(x)$ which contains exactly four 1-simplexes (simple arcs) and f is completely regular with respect to the collection of all 1-simplexes (defined below). Then $M \cong T$ or a Klein bottle.

Before giving a sketch of a proof, we define what we mean by a completely regular mapping with respect to a collection of arcs as used above. That is, given $\varepsilon > 0$, there is a $\delta > 0$ so that if $p, q \in (0, 1)$ and $|p - q| < \delta$, then the four 1-simplexes of $f^{-1}(p)$ can be mapped by homeomorphisms h_1, h_2, h_3 , and h_4 onto the four 1-simplexes of $f^{-1}(q)$ so that no point of $f^{-1}(p)$ is moved more than ε . We say that $f^{-1}(p)$ is piecewise homeomorphic to $f^{-1}(q)$.

OUTLINE OF A PROOF OF THEOREM C. Let C denote a circle triangulated into exactly four 1-simplexes (also four vertices). If C_1 and C_2 are a pair of disjoint circles triangulated into exactly four 1-simplexes, then the space of all quadruples of homeomorphisms (4-piece homeomorphisms) of C onto $C_1 \cup C_2$ taking the 1-simplexes of C onto the 1-simplexes of $C_1 \cup C_2$ is locally arcwise connected. Furthermore, this space is homeomorphic to the space of all 4-piece homeomorphisms of C onto C (fixed triangulation). For each $x \in (0,1)$ and fixed triangulation of C, let C_2 denote the space of all 4-piece homeomorphisms of C onto C (fixed triangulation). For each C_2 denote the space of all 4-piece homeomorphisms of C onto C_2 denote the space of all 4-piece homeomorphisms of C onto C_2 denote the collection of all C_2 and C_2 denote the union of the elements of C_2 . It follows that (1) C_2 is a complete metric space, (2) C_2 for each C_2 (0, 1) is C_2 0, and (3) C_2 1 is equi- C_2 1.

An application of Michael's selection theorem as given in the proof of Theorem 4 of [2], [4] yields the desired result.

Characterizations of *n*-manifolds may be obtained in a similar manner. Detailed proofs of the more general theorems will appear elsewhere.

BIBLIOGRAPHY

- 1. A. V. Černavskii, Local contractibility of the homeomorphism group of a manifold, Dokl. Akad. Nauk SSSR 182 (1968), 510-513 = Soviet Math. Dokl. 9 (1968), 1171-1174. MR 38 #5241.
- 2. E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1958), 103-118. MR 19, 1187.
- 3. R. C. Edwards and R. C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. 93 (1971), 63-88.
- 4. M.-E. Hamstrom, Completely regular mappings whose inverses have LC° homeomorphism group: A correction, Proc. Conf. on Monotone Mappings and Open Mappings, SUNY, Binghampton, 1970, pp. 255–260.

- 5. L. F. McAuley, The existence of a complete metric for a special mapping space and some consequences, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N.J., 1966, pp. 135–139. MR 37 #6903.

 6. E. A. Michael, Continuous selections. I, II, III, Ann. of Math. (2) 63 (1956), 361–382; ibid. (2) 64 (1956), 562–580; ibid. (2) 65 (1957), 375–390. MR 17, 990; 18, 325; 750.

 7. J. W. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 300, 405, MP 18, 409
- 399-405. MR 18, 498.
- -, Sommes de variétés différentiables et structures différentiables der sphéres, Bull. Soc. Math. France 87 (1959), 439-444. MR 22 #8518.
- 9. G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., no. 1183 = Publ. Inst. Math. Univ. Strasbourg, Hermann, Paris, 1952, pp. 91-154, 157-158. MR 14, 1113.
- 10. R. Rosen, A weak form of the star conjecture for manifolds, Notices Amer. Math. Soc. 7 (1960), 380. Abstract #570-28.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BINGHAMTON, BINGHAMTON, NEW YORK 13901