LOCALIZATION AND COMPLETION IN HOMOTOPY THEORY¹

BY A. K. BOUSFIELD AND D. M. KAN

Communicated by E. H. Brown, June 1, 1971

1. **Introduction.** For each *space* X (i.e. simplicial set with only one vertex) and *solid ring* R (i.e. commutative ring with 1, for which the multiplication map $R \otimes R \rightarrow R$ is an isomorphism [3]) we shall construct, in a *functorial* manner, a space X_R^2 , the R-completion of X, and discuss some of its properties. The proofs will be given elsewhere.

If $R \subset Q$ (i.e. R is a subring of the rationals) and $\pi_1 X = 0$, then $\pi_* X_R \approx \pi_* X \otimes R$ and $X_R^{\hat{}}$ is a *localization* in the sense of [7], [9] and [11].

If $R = Z_p$ (the integers modulo a prime p), $\pi_1 X = 0$ and $\pi_n X$ is finitely generated for all n, then $\pi_* X_R^{\hat{}}$ is the usual p-profinite completion of $\pi_* X$ and $X_R^{\hat{}}$ is a p-completion in the sense of [8] and [11].

This note is, in some sense, a continuation of [2]. However, our present construction is (although homotopically equivalent to) completely different from the one of [2] and has the advantage that it can easily be generalized to a functorial notion of fibre-wise R-completion. In [2] we used cosimplicial methods, while here the basic tool is that of

2. The R-completion of a group. To define this notion we call a group N an R-nilpotent group if N has a central series

$$1 = N_k \subset \cdots \subset N_i \subset \cdots \subset N_0 = N$$

such that for each j the quotient group N_j/N_{j+1} admits an R-module structure. The R-completion of a group G then is the group $G_R^{\hat{n}}$ obtained by combining Artin-Mazur [1, §3] with an inverse limit, i.e. by taking the inverse limit [1, p. 147] of the functor which assigns to every homomorphism $G \rightarrow N$, where N is R-nilpotent, the group N, and to every commutative triangle

AMS 1969 subject classifications. Primary 5540.

Key words and phases. Relative R-completion of groups, R-completion of spaces, fibre-wise R-completion, R-nilpotent groups, R-nilpotent spaces.

¹ This research was supported by the National Science Foundation.

with N and N' both R-nilpotent, the map $N \rightarrow N'$. Clearly this R-completion comes with a natural map $G \rightarrow G_R^{\hat{}}$ and indeed the functor ()_R has the structure of a triple on the category of groups.

Some "well-known" special cases are:

- I. If R = Z (the integers), then $G_R = \text{proj lim } G/\Gamma_i G$, where $\{\Gamma_i G\}$ is the lower central series [4].
- II. If $R = Z_p$, then $G_R = \text{proj lim } G/\Gamma_i^{(p)}G$, where $\{\Gamma_i^{(p)}G\}$ is the *p-lower central series* [4].
- III. If $R = Z_p$ and G is finitely generated, then $G_R^{\hat{}}$ is the *p-profinite completion* of Serre [10, I-5] and thus if G is also abelian, then $G_R^{\hat{}} \approx G \otimes \text{(the } p\text{-adic integers)}.$
- IV. If R = Q and G is nilpotent (i.e. Z-nilpotent), then $G_R^{\hat{}}$ is the $Mal'cev\ completion\ [5],\ [9,\ p.\ 279].$
 - V. If $R \subset Q$ and G is abelian, then $G_R \approx G \otimes R$.

It is not hard to verify that there also is a notion of *relative R-completion*, which assigns to a short exact sequence of groups $1 \rightarrow F \rightarrow G$ $\rightarrow H \rightarrow 1$ a commutative diagram

$$1 \to F \to G \to H \to 1$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad =$$

$$1 \to \hat{F_R} \to \hat{G_R} \to H \to 1$$

with the bottom row also exact. Here $G_R^{\hat{}}$ is the group with generators (g, h), where $g \in F_R^{\hat{}}$, and relations

$$(gf, h) = (g, fh),$$
 $f \in F, g \in G, h \in F_R,$
 $(g, h)(g', h') = (gg', g'(h)h'),$ $g, g' \in G, h, h' \in \hat{F_R},$

where g' also denotes the automorphism of F_R , which is the R-completion of the automorphism of F, which, in turn, is the restriction of the inner automorphism of G induced by g'.

3. The R-completion of a space. Let X be a "space," i.e. a simplicial set with only one vertex. Then we define its R-completion, $X_{R}^{\hat{}}$, by

$$\hat{X_R} = \overline{W}(GX)_R$$

i.e. we apply to X the *loop group* functor G [6], then R-complete dimensionwise and finally apply the classifying functor W [6]. Clearly this R-completion also comes with a natural map

$$X \to \overline{W}GX \to \overline{W}(GX)_R = X_R$$

and this functor () \hat{R} has the structure of a triple on the category of "spaces."

Using the relative R-completion one can, in the same way, obtain the *fibrewise* R-completion of a fibration of "spaces" $F \rightarrow E \rightarrow B$, i.e. a functorial commutative diagram

$$F \to E \to B$$

$$\downarrow \qquad \downarrow \qquad \downarrow =$$

$$\hat{F_R} \to \hat{E_R}' \to B$$

for which the map $E_R^{\hat{}}' \rightarrow B$ is a fibre map and the inclusion of $F_R^{\hat{}}$ in its fibre is a homotopy equivalence.

Depending on how much X_R resembles X, one can consider three classes of spaces: R-complete, R-good and R-bad ones. First the

- 4. R-complete spaces. A space X will be called R-complete if the natural map $X \rightarrow X_R^2$ induces an isomorphism $\pi_* X \approx \pi_* X_R^2$. For example
- 4.1 The space K(B, n) is R-complete if B admits an R-module structure $(n \ge 1)$.

To obtain a wider class of R-complete spaces we will say that a group π acts R-nilpotently on a left π -module M, if M has a π -module filtration

$$1 = M_k \subset \cdots \subset M_i \subset \cdots \subset M_0 = M$$

such that each quotient M_j/M_{j+1} has trivial π -action and admits an R-module structure, and call a space X R-nilpotent if $\pi_1 X$ is R-nilpotent and $\pi_1 X$ acts R-nilpotently on $\pi_n X$ for $n \ge 2$. This is equivalent to saying that the Postnikov tower of X can be refined to a tower of principal fibrations where each fibre is a K(B, n) with B an R-module. Now we have

4.2 Every R-nilpotent space is R-complete.

This follows readily from 4.1 and the following lemma (with Y=*).

4.3 FIBRE SQUARE LEMMA. Consider the two commutative squares of connected spaces

$$F \to X$$
 $F_R \to X_R$
 $\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $Y \to B$ $Y_R \to B_R$

If the first one of these is a fibre square with simply connected lower right corner, then so is, up to homotopy, the second one.

- 5. R-good spaces. A space X will be called R-good if the natural map $X \rightarrow X_R$ induces an isomorphism $H_*(X; R) \approx H_*(X_R^{\hat{}}; R)$. Moreover one has
 - 5.1 A space X is R-good if and only if $X_R^{\hat{}}$ is R-complete.

This follows, using the triple structure of $()_R$, from

5.2 A map $f: X \rightarrow Y$ induces an isomorphism $H_*(X; R) \approx H_*(Y; R)$ if and only if it induces an isomorphism $\pi_* X_R^{\hat{}} \approx \pi_* Y_R^{\hat{}}$.

Another consequence of this is that for an R-good space X the natural map $i: X \rightarrow X_R^{\hat{}}$ is, up to homotopy, characterized by each of the following universal properties:

- (i) For any map $f: X \rightarrow Y$ inducing an isomorphism $H_*(X; R) \approx H_*(Y; R)$ there is a unique homotopy class of maps $g: Y \rightarrow X_R$ such that $gf \sim i$.
- (ii) For any map $f: X \rightarrow Y$ where Y is R-complete, there is a unique homotopy class of maps $h: X_R \rightarrow Y$ such that $hi \sim f$.

It seems hard to say when a space is R-good. Some partial results in this direction are

5.3 Let $R = \mathbb{Z}_p$ or $R \subset \mathbb{Q}$ and let B be an abelian group. Then K(B, n) is R-good for all n.

Combining this with 4.3 one gets

5.4 Let $R = Z_p$ or $R \subset Q$. Then every Z-nilpotent space is R-good.

This is not best possible. For instance one has

- 5.5 Let $R = \mathbb{Z}_p$ or $R \subset \mathbb{Q}$ and let X be a space such that $H_1(X; R) = 0$. Then X is R-good.
- 6. R-bad spaces. A space X is called R-bad if it is not R-good. It turns out that R-bad spaces are "very bad."
- 6.1 If X is R-bad, then so is $X_R^{\hat{}}$, i.e. no iterated R-completion of X is R-complete.

An example of a Z-bad space is an infinite wedge of circles, but we do not know whether the wedge of two circles is Z-bad.

- 7. Homotopy groups of an R-completion. The following result illustrates the close relation between the R-completion functor for spaces and the one for groups.
- 7.1 Let X be a Z-nilpotent space, and unless $R \subset Q$, suppose that $\pi_n X$ is finitely generated for all n. Then there is a natural isomorphism

$$\pi_n(X_R^{\hat{}}) \approx (\pi_n X)_R^{\hat{}}, \qquad n \geq 1.$$

This is proved by combining 4.3 with computations for K(B, n)'s. For more results in the case $R = \mathbb{Z}_p$ see [2, 7.2].

We end with the following consequence of 4.3 and 7.1, which is useful in computing R-completions of groups:

7.2 Let N be a nilpotent (i.e. Z-nilpotent) group, let $B \subset N$ be a normal subgroup and, unless $R \subset Q$, suppose that N is finitely generated. Then the following sequence is exact:

$$1 \to \hat{B_R} \to \hat{N_R} \to (N/B)_R \to 1.$$

REFERENCES

- 1. M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Math., no. 100, Springer-Verlag, Berlin and New York, 1969. MR 39 #6883.
- 2. A. Bousfield and D. Kan, *Homotopy with respect to a ring*, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1971, pp. 59-64.
 - 3. ——, The core of a ring (to appear).
 - 4. E. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107-209.
- 5. A. Mal'cev, Nilpotent groups without torsion, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 201-212. (Russian) MR 10, 507.
- J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR 36 #5942.
- 7. M. Mimura, G. Nishida and H. Toda, Localization of CW-complexes and its applications (to appear).
- 8. D. Quillen, An application of simplicial profinite groups, Comment Math. Helv. 44 (1969), 45-60. MR 39 #3490.
- 9. ——, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 41 #2678.
- 10. J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., no. 5, Springer-Verlag, Berlin and New York, 1964. MR 31 #4785.
- 11. D. Sullivan, Geometric topology. I: Localization, periodicity and Galois symmetry, M.I.T., Cambridge, Mass., 1970 (mimeographed notes).

Brandeis University, Waltham, Massachusetts 02154

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139