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1. Introduction. For each space X (i.e. simplicial set with only one
vertex) and solid ring R (i.e. commutative ring with 1, for which the
multiplication map R® R—R is an isomorphism [3]) we shall con-
struct, in a functorial manner, a space Xz, the R-completion of X, and
discuss some of its properties. The proofs will be given elsewhere.

If RCQ (i.e. R is a subring of the rationals) and mX =0, then
7{*X 2 ~mxX ®R and Xp, is a localization in the sense of [7], [9] and

11].

If R=Z, (the integers modulo a prime p), mX =0 and 7,X is
finitely generated for all #, then m+Xy is the usual p-profinite comple-
tion of mX and Xp, is a p-completion in the sense of [8] and [11].

This note is, in some sense, a continuation of [2]. However, our
present construction is (although hkomotopically equivalent to) com-
pletely different from the one of [2] and has the advantage that it can
easily be generalized to a functorial notion of fibre-wise R-completion.
In [2] we used cosimplicial methods, while here the basic tool is that
of

2. The R-completion of a group. To define this notion we call a
group N an R-wnilpotent group if N has a central series

1=N:C-- - CN;C- - CNo=N

such that for each j the quotient group N;/N;;1 admits an R-module
structure. The R-completion of a group G then is the group Gg ob-
tained by combining Artin-Mazur [1, §3] with an inverse limit, i.e.
by taking the inverse limit [1, p. 147] of the functor which assigns to
every homomorphism G—N, where N is R-nilpotent, the group N,
and to every commutative triangle
/N
G |
\N’
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with N and N’ both R-nilpotent, the map N—N’. Clearly this
R-completion comes with a natural map G—Gz and indeed the functor
( )z has the structure of a triple on the category of groups.

Some “well-known” special cases are:

I. If R=Z (the integers), then Gg = proj lim G/T';G, where {I'.G}
is the lower central series [4].

II. If R=Z,, then Gz =proj lim G/T?G, where {T{’G} is the
p-lower central series [4].

I11. If R=Z, and G is finitely generated, then Gy, is the p-profinite
completion of Serre [10, I-5] and thus if G is also abelian, then
Gr =G ® (the p-adic integers).

IV. If R=Q and G is nilpotent (i.e. Z-nilpotent), then G is the
Mal'cev completion [5], [9, p. 279].

V. If RCQ and G is abelian, then Gz ~G®R.

It is not hard to verify that there also is a notion of relative R-com-
pletion, which assigns to a short exact sequence of groups 1-F—G
—H—1 a commutative diagram

1-F -G —H-—-1
Il =
1—->FR-—)GR’—>H—>1

with the bottom row also exact. Here G’ is the group with generators
(g, b), where g& Fg, and relations

(&f, k) = (g, /h), fEF,gEG, I E Fa,
(g, W\ W) = (gg, &M, g ¢ € G, h b & Fr,

where g’ also denotes the automorphism of Fg, which is the R-comple-
tion of the automorphism of F, which, in turn, is the restriction of
the inner automorphism of G induced by g’.

3. The R-completion of a space. Let X be a “space,” i.e. a simplicial
set with only one vertex. Then we define its R-completion, Xg, by

Xz = WIGX)z

i.e. we apply to X the loop group functor G [6], then R-complete
dimensionwise and finally apply the classifying functor W [6].
Clearly this R-completion also comes with a natural map

X > WG6X »W([GX)z = Xr

and this functor ( )z has the structure of a triple on the category of
“spaces.”
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Using the relative R-completion one can, in the same way, obtain
the fibrewise R-completion of a fibration of “spaces” F—E—B, i.e. a
functorial commutative diagram

F - E —B
Il =

Fr—Ei —B
for which the map Ep’—B is a fibre map and the inclusion of Fg in
its fibre is a homotopy equivalence.

Depending on how much Xy resembles X, one can consider three
classes of spaces: R-complete, R-good and R-bad ones. First the

4. R-complete spaces. A space X will be called R-complete if the
natural map X—Xpz induces an isomorphism m+X ~w+Xz. For exam-
ple

4.1 The space K(B, n) is R-complete if B admits an R-module
structure (n=1).

To obtain a wider class of R-complete spaces we will say that a
group m acts R-nilpotently on a left w-module M, if M has a w-module
filtration

1=MkCCMyCCM0=M

such that each quotient M;/Mj, has trivial 7-action and admits an
R-module structure, and call a space X R-nilpotent if mX is R-nil-
potent and m.X acts R-nilpotently on w,X for = 2. This is equivalent
to saying that the Postnikov tower of X can be refined to a tower of
principal fibrations where each fibre is a K(B, n) with B an R-module.
Now we have

4.2 Every R-nilpotent space is R-complete.
This follows readily from 4.1 and the following lemma (with V'=x).

4.3 FIBRE SQUARE LEMMA. Consider the two commutative squares of
connected spaces

F X F;—>X;z
I ! !
Y —-B Yr— Br

If the first one of these is a fibre square with simply connected lower right
corner, then so is, up to homotopy, the second one.
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5. R-good spaces. A space X will be called R-good i£ the natural
map X—Xp induces an isomorphism Hyx(X; R) = Hx«(Xg; R). More-
over one has

5.1 A space X is R-good if and only if Xg is R-complete.
This follows, using the triple structure of ( )z, from

5.2 A map f: X—Y induces an 'Lsomorpinsm Hy(X; R) Hy(Y; R)
if and only if it induces an isomorphism wxXpg ~m«Vg.

Another consequence of this is that for an R-good space X the
natural map 7: X—X}z is, up to homotopy, characterized by each of
the following universal properties:

(1) For any map f:X—Y inducing an isomorphism Hy(X; R)
=~Hy(Y; R) there is a unique homotopy class of maps g: Y—X & such
that gf~r1.

(ii) For any map f: X—Y where Y is R-complete, there is a unique
homotopy class of maps h:Xg—Y such that hi~f.

It seems hard to say when a space is R-good. Some partial results
in this direction are

5.3 Let R=Z, or RCQ and let B be an abelian group. Then K (B, n)
ts R-good for all n.

Combining this with 4.3 one gets
5.4 Let R=Z, or RCQ. Then every Z-nilpotent space is R-good.
This is not best possible. For instance one has

5.5 Let R=2Z, or RCQ and let X be a space such that Hi(X; R)=0.
Then X is R-good.

6. R-bad spaces. A space X is called R-bad if it is not R-good. It
turns out that R-bad spaces are “very bad.”

6.1 If X is R-bad, then so is Xz, i.e. no iterated R-completion of X is
R-complete.

An example of a Z-bad space is an infinite wedge of circles, but we
do not know whether the wedge of two circles is Z-bad.

7. Homotopy groups of an R-completion. The following result
illustrates the close relation between the R-completion functor for
spaces and the one for groups.

7.1 Let X be a Z-nilpotent space, and unless RCQ, suppose that w,X
s finitely generated for all n. Then there is a natural isomorphism
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m(Xz) ~ (0 X)z, nZ1.

This is proved by combining 4.3 with computations for K(B, n)’s.
For more results in the case R=Z, see [2, 7.2].

We end with the following consequence of 4.3 and 7.1, which is
useful in computing R-completions of groups:

7.2 Let N be a nilpotent (i.e. Z-nilpotent) group, let BCN be a
normal subgroup and, unless RCQ, suppose that N is finitely gener-
ated. Then the following sequence is exact:

1— Bz — Nz — (N/B)z — 1.
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