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1. Introduction. A variety is defined here to be a nonempty class
of real Hausdorff locally convex spaces (LCS’s) closed under the
operations of taking subspaces (not necessarily closed), separated
quotients, arbitrary products and isomorphic images. The two ex-
treme examples of a variety are the class of all LCS’s and the class
of all zero-dimensional LCS’s. Less obvious examples are:

(a) the class of all Schwartz LCS’s [8],

(b) the class of all nuclear LCS’s [26],

(c) the class of all LCS’s having their weak topology [8].

The potency of an analogous concept for groups [21] has mani-
fested itself for three decades, and for topological groups has quite
recently been asserted [3], [14]-[20]. In this note we announce
selected results from a forthcoming paper [5] which, we hope, will
convince the reader that the theory of varieties not only is of intrinsic
interest, but lends to locally convex spaces a new and illuminating
perspective which consolidates, strengthens and adds to significant
parts of the literature.

2. Results. For any class € of LCS’s, the variety generated by €, de-
noted by V(€), is the smallest variety containing €. For example,
the variety generated by the class of all real Banach spaces is the
class of all LCS’s [26].

Consider these seven properties for Banach spaces: (i) reflexivity;
(ii) quasi-reflexivity [4]; (iii) almost reflexivity [10]; (iv) separabil-
ity; (v) having separable dual; (vi) being Hilbertian; (vii) having
Hamel dimension <&, where N is some fixed infinite cardinal. The-
orem 1 is a stronger statement than the usual ones about closed sub-
spaces, separated quotients and finite products of Banach spaces
with one of the above properties.
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THEOREM 1. If ® is a class of Banach spaces all of which possess a
given one of the above properties (i)—(vii), then each Banach space E in
V(®) possesses the same property.

CoROLLARY 2. Tke class of all varieties is not a set.

The variety generated by the class of all real Nj-dimensional
normed spaces contains no infinite-dimensional Banach space. How-
ever,

THEOREM 3. The variety generated by an arbitrary class of Fréchet
spaces contains the completion of each of its members.

If @ consists of the single LCS E, then the variety it generates is
singly generated and denoted by V(E).

THEOREM 4. A variety is singly generated if and only if it is contained
in V(L(T)) for some set T.

COROLLARY 5. Any subvariety of a singly generated variety is singly
generated.

The analogues to Corollaries 2 and 6 are false for groups [21].
COROLLARY 6. Not every variety is singly generated.

If a variety U contains an LCS E such that each LCS in U is iso-
morphic to a subspace of a product of copies of E, then we say that
E is a universal generator for .

THEOREM 7. Every singly generated variety has a universal generator.

Since every separable Banach space is a quotient of 1, it follows
that every separable LCS is contained in O(%). In fact, C([0,1]) is a
universal generator for V(). (Cf. [12].) Statement (9), §2 of [27]
implies that every Schwartz space is a subspace of a product of sep-
arable normed spaces. Thus we have proved the theorem of A. Todd?,
that UV(l) contains the variety of Schwartz spaces. Using Theorems
4 and 7 and Corollary 5 we obtain

THEOREM 8. The variety of Schwartz spaces, and hence also the variety
of nuclear spaces, has a universal generator.

A deep result of Komura and Komura [9] is that (s) is a universal
generator for the variety of nuclear spaces, where (s) is the Fréchet
space of rapidly decreasing sequences. (To our knowledge, no one has
found a correspondingly serviceable and concrete universal generator

1 To appear in Mr. Todd’s dissertation at the University of Florida.
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for Schwartz spaces.) Using this result and [2], it is possible to gen-
eralize a theorem of Grothendieck so as to imply Theorem 9 below,
[25]. Grothendieck’s original version ([7], also [26, p. 101]) implies
Theorem 9 for the special case E=1, (1Sp=S ).

THEOREM 9. Let E be an arbitrary infinite-dimensional Banach space.
Then V(E) contains the variety of nuclear spaces. Indeed, each nuclear
space is isomorphic to a subspace of a product of copies of E.

Theorem 9 indicates that the variety of nuclear spaces is a rela-
tively small one. In regard to absolute smallness we have

THEOREM 10. (i) The variety of all LCS’s with their weak fopology
has R (the reals) as a universal generator, and hence is the smallest non-
trivial variety.

(ii) There exists a (unique) second smallest variety ‘O;%‘O(R), in the
sense that every variety properly containing VO(R) must contatn V. O has
@ as a universal generator, where ¢ is an No-dimensional real vector space
given the strongest locally convex topology [24].

(iii) There exists no third smallest variety.

CoROLLARY 11. An LCS E has its weak topology if and only if V(E)
does not contain .

Also of interest with regard to size is

THEOREM 12. Any variety generated by an infinite-dimensional
normed space contains a maximal proper subvariety.

Finally, we investigate the varieties generated by the well-known
Banach spaces. Using Theorem 1 and results in [1], [7], [13] and
[22], we obtain

THEOREM 13. For 1<p< o, K any uncountable compact metric
space and (s) the Fréchet space of rapidly decreasing sequences of [9],

V(R) S0(p) Z0((9)) 2V, S (VL)
ZU() = V(C(K)) = V(L1) ZV() = V(La).

A classical result of Banach [1] says that if 1<ps%¢< » then I,
is mot isomorphic to a subspace of [,; in fact it follows from

TueOREM 14. 1,&EV(l,) for 1<p#g< =.

That I, cannot be manufactured from I, using (repeatedly) the
operations of taking subspaces, quotients and products.
Since 4 is a subspace of L, for 1<p< » [28], we have

COROLLARY 15. V(l,) V(L) for 1<p< o, p£2.
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Recently, the problem of Banach’s linear dimension for L, has
been completely solved [11]. The stronger varietal statement is

THEOREM 16. Let 1 <p#g< ». Then the following are equivalent:
(i) L,EV(Ly),

(i) L,EV(Ly),

(iii) g<p=20r2=p<g.

By Theorem 1(iii), every Banach space in U(c,) is almost reflexive.
Surprisingly we have, by using the results of [6],

THEOREM 17. V(co) contains no infinite-dimensional reflexive Banach
space. Indeed, no weakly sequentially complete Banach space is in V(co).

REMARK. By Theorems 1(i), 3 and 17 we see that U (co) MV (l,), for
1<p< =, is a variety which contains no infinite-dimensional normed
spaces. This emphasizes, by Theorem 9, that no infinite-dimensional
normed space is nuclear.

In conclusion we mention the

THEOREM 18. Let X and Y be compact Hausdorff spaces. If X is dis-
persed [23] and Y is not dispersed, then C(Y)&EV(C(X)).
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