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The Adams spectral sequence has been an important tool in re­
search on the stable homotopy of the spheres. In this note we outline 
new information about a variant of the Adams sequence which was 
introduced by Novikov [7]. We develop simplified techniques of 
computation which allow us to discover vanishing lines and periodic­
ity near the edge of the E2-term, interesting elements in E^'*, and a 
counterexample to one of Novikov's conjectures. In this way we 
obtain independently the values of many low-dimensional stems up 
to group extension. The new methods stem from a deeper under­
standing of the Brown-Peterson cohomology theory, due largely to 
Quillen [8]; see also [4]. Details will appear elsewhere; or see [ l l ] . 

When p is odd, the p-primary part of the Novikov sequence be­
haves nicely in comparison with the ordinary Adams sequence. Com­
puting the £2-term seems to be as easy, and the Novikov sequence 
has many fewer nonzero differentials (in stems ^ 4 5 , at least, if p = 3), 
and periodicity near the edge. The case p = 2 is sharply different. 
Computing E2 is more difficult. There are also hordes of nonzero dif­
ferentials dz, but they form a regular pattern, and no nonzero differ­
entials outside the pattern have been found. Thus the diagram of £4 
( =£oo in dimensions ^17) suggests a vanishing line for Ew much lower 
than that of £2 of the classical Adams spectral sequence [3]. 

I t is a pleasure to thank Arunas Liulevicius, my thesis adviser, 
for his help. In particular, parts of the proofs of Proposition 1 and 
Theorem 7 are due to him. I am also grateful to many others for their 
suggestions, and especially to Frank Adams. 

1. The spectral sequence. The construction of the classical Adams 
spectral sequence for the spheres [l ] works equally well if the spec-
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trum K(ZP) representing ordinary cohomology is replaced by an 
arbitrary ring spectrum X. If X satisfies certain conditions, the 
E2-term of the resulting sequence will be isomorphic to 

where AX = X*(X) is the algebra of operations in X-cohomology 
theory and A x = 7r*(X) is the coefficient ring. Novikov showed [7] 
that if X~MU (the spectrum representing complex cobordism) this 
multiplicative spectral sequence converges to the stable homotopy 
r ingx*: 

where F* is a filtration of 7r*. Furthermore, if X' =BPP, the Brown-
Peterson spectrum [4] for the prime p, the resulting spectral sequence 
{pEr, pdr} is exactly the ^-primary part {Er®Qp, dr®Qp } of the MU 
spectral sequence (Qp is the ring of rational numbers with denomi­
nators prime to p.) 

Not much is known about the MU spectral sequence, because even 
limited computations of E2 have been difficult. This is regrettable, 
since what is known indicates that the Novikov sequence has certain 
a priori advantages over the usual one. The nonzero terms are sparse, 
for example: pEs

2
a = 0 if t^O mod 2(£ — l ) . Furthermore, almost all of 

the image of the J-homomorphism [2], [9] lies on the line 5 = 1, in 
the following sense. According to Novikov, E122t = Zm(t)(oct)1 a cyclic 
group with generator at, isomorphic to the image of J in dimension 
2t — 1 (isomorphic to Z2 if 2/— 1 = 5 mod 8). There is a map qilT% 
—>E2,n+1 such that an element of El'n+1 survives to £ « iff it belongs 
to im gi. Furthermore, if qi denotes the restriction of qi to im ƒ, then 
[7, Chapters 10 and 11] 

(1) ifn = 8ife + l ,£i ;w + 1=E1
0 ;n + 1=Z2 ; 

(2) if n = Sk+3 (k>0), then im q^im Ci has index 2 in E\n+l 

= Zm(4fc+2), and §fi has kernel Z2 ; in fact, ^30^+2 = WOLM 5^0 ; 
(3) if » = 8&+5, El'n+1=Z2 does not survive to E„\ in fact, 

dzatk+s = h*aa+i 9e 0 ; 
(4) if « = 8è + 7, im ?i = Z w ( 4* + 4)- ia , , , + l -£ I - , l + l . 
Here h=ai. 

2. Quillen's algebra. Novikov knew that, given a prime pt the 
algebra ABP = BP*(BP) was much simpler than AMU®QP, but he did 
not have complete information about ABP. Later, Quillen [8] dis­
covered an idempotent c, which split the spectrum MUQP into a sum 
of suspensions of the spectrum BPP [4]. Now 
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ir*(BP) - Qp[ku * , , • • • ], H*(BP) « Q9[mu » « , • • • ], 

with |ft<| « - | m « | -—2(p«—1). Wecan take m ^ C l / ^ A e t C P ^ " 1 ] ; 
the Hurewicz homomorphism A is monic, and may be computed using 
Quillen's formal-group techniques [ l l ] or standard methods. Thanks 
to the idempotent e, Quillen and Adams were able to write down 
explicit formulas for the Hopf-algebra structure of the algebra of 
operations A BP ( = A, for short). 

First, there is a coalgebra R of operations, free as a Qp-module on 
generators rE> where E runs over all finitely nonzero sequences 
(ei, e2, • • • ) of nonnegative integers and | r^ | = 2 ( ] £ (pi—l)ei)t The 
diagonal map is given by <£*f\e = ^T,E'+E"**E rE> ®nE". Then A' 
=w*(BP) is an algebra over the coalgebra R, with action given (via 
the Hurewicz map) by rEmn = mn-i if ei = pn~i and all other ej are zero, 
and rEmn = 0 otherwise. Moreover, multiplication by an element X of 
A' is also a .BP-cohomology operation, and in fact every operation can 
be written as a (possibly infinite) sum ^X»^ t . in which the degree of 
each \itEi is a constant independent of i. Unfortunately, the com­
position rErF of two operations in R does not usually lie in R; how­
ever, it can be written uniquely as a finite sum rErp = ^2K CK^K with 
CJTGA', using the methods of [ l l ] or those of [4]. This enables us to 
express compositions (Xrjj)(X'f>) in the form ^ X ^ . . Thus the alge­
bra A of all operations is the completed tensor product A'®R. 

PROPOSITION 1. Let A be the two-sided ideal in A generated by all 
elements of A of negative degree. Let &p/(Qo) be the algebra of reduced 
Steenrod pth powers [ô]. Then there is an isomorphism f*A/A 
=aP/(Go). 

PROOF. Let Th :BPP~>K(ZP) be the Zp Thorn class. Then 

? = Th*: [BP, BP] -> [BP, K(ZP)] 

II II 
A H*(BP;ZP) 

II 
<*P/(QQ) 

satisfies 

J(**f>) - ««J*), £ = 0 [ 6 ] ; 

= 0, otherwise; 

where c is the canonical antiautomorphism. The map J induces the 
required ƒ on A/\. 

file:///itEi


172 RAPHAEL ZAHLER (January 

A generator TE is indecomposable if it cannot be expressed as a 
finite sum r# = £ ) \*i?*i?/, where X^EA'; Rit R/Ç^R; and \Ri\$ 
\R/\>0. 

THEOREM 2. The generator rE of R is indecomposable if and only if 
E = (p\ 0,0, • • • ), i ^O . Moreovery £r(j>»,o,o,.-.) is decomposable. 

The proof is obtained by noticing certain pleasant properties of 
the multiplication table for R and applying them in the proper se­
quence. 

3. Resolutions over A. To compute Ext we must construct reso­
lutions over A, which seems difficult at first glance since R is not an 
algebra, A is not connected, and the ground ring Qp is not a field. The 
next proposition shows how to circumvent some of these difficulties. 
Define the filtrations J * A ' = 2J*<J2. (A')*, F*A=F*A'&A, and F°M 
= (F8A)Mif Mis an ^4-module. We have 

0 -* FlM ^>M^coki-+0. 

Write J M for cok i; then J is easily made into a functor on the cate­
gory of A -modules. 

PROPOSITION 3. There exist complexes 

C: • • • ^ C < 4 C M ^ • • • - > C i - i C o = A -> A ' - » 0 

(1) Ci= 2 AUjwithdiUj = r(p,toto,.,t); 
(2) C» =11*4 wj0 w locally finitely generated as an A-module, i>l; 
(3) ker( /d t) C j(im d t+i) iw Jdfor all i, n ^ O . 
-4w;y swc& C is an A-projective resolution of A'. 

The proof is straightforward. Notice that the infinite direct prod­
uct 11-4wj0 i s n o t necessarily free over A ; it is projective, however. As 
a further aid to computation there is 

LEMMA 4. If {Ct-, di} is any A-projective resolution of A', write 
C* = HomîiCi, A'), df = HomJ(d<, A'). T^w 

Ext*/(A', A') *= Tors(cok(#) ') , (s, /) ^ (0, 0). 

PROOF. This follows from the fact that Ext^c/ is finite for (s, t) 
^ ( 0 , 0 ) [7, Corollary 2.1]. 

Thus in determining Ext we need know just the boundaries, and 
not the cycles too. In fact we can even work over Zpf for sui table/ . 
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Now we can prove 

PROPOSITION 5. E x t M = 0 unless * = 0; Ext 0 « 0 -Z , 

THEOREM 6. Ext2»' contains a direct summand isomorphic to Zpfor 
l = 2pi(p-l) {i^\) andt-2{pi+l)(p-\) (*>1). 

THEOREM 7. For p = 2, the element of Ext2,2* found in Theorem 6 
maps to the Arf-invariant element h] of the classical Adams spectral 
sequence [5]. 

PROOF. Apply the Thorn map (Proposition 1) to a suitable ^-res­
olution. 

PROPOSITION 8. The two-primary part 2Ext*'* has the following 
"edge" values: 

2 E x tn,2(n+*) « 0 > k < 0 . 

— Z2, k = 0, n è 1 (generated by hn) ; 

= 0, k = 1, n è 2; 

= Z2, 2 ^ i ^ 5 , w ^ 4 (generated by Aw""1aib+i). 

Further computations of the additive structure of 2Ext*»* in low 
dimensions are given in Figure 1. Thanks to Proposition 8, the first 
three nonzero Novikov differentials dzcti = A8at-_i, i = 3, 6, 7, give rise to 
infinite towers of nonzero d$s. Moreover, every other differential in 
the range t — s^ 17 must be zero for dimensional reasons. Finally, iE^ 
has a vanishing line considerably lower than that of the E^-term of 
the classical Adams spectral sequence in this range of dimensions. We 
conjecture that the preceding four sentences are also true without 
restriction on the dimensions. 

Similar computations for p = 3 disclose striking edge properties like 
Proposition 8, but many fewer differentials. Contrary to Novikov's 
conjecture [7], there is a nonzero differential dz:ElM—>E7

2
A0 for p = 3. 

This differential, whose existence is inferred from Toda's result [ l0] , 
also gives rise to an infinite family of nonzero differentials. I t is 
encouraging that there is only one nonzero differential in the range 
/ — s ^ 4 0 , as compared to 17 in the classical 3-primary Adams spec­
tral sequence. 
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FIGURE 1.2Ext*'x for the Novikov sequence. 


