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1. Introduction. Let U be an open subset of the Riemann sphere 
S2. The algebra of bounded analytic functions on U is denoted by 
H°°(Z7) and the algebra of continuous functions on 77 which are analyt­
ic on U is denoted by A(U). We are interested in the following two 
questions: 

(1) When does Re A(U) have finite defect in CB(dU)? That is, 
when does the uniform closure of the real parts of functions in A ( U) 
have finite codimension in the space of continuous real-valued func­
tions on the boundary d U of U? 

(2) When is A(U) pointwise boundedly dense in H"(U)? That is, 
when can every function in iJ°°(Z7) be approximated pointwise on U 
by a bounded sequence in A ( U) ? 

These two problems are related by the following theorem, which 
extends a result of A. M. Davie [2]. 

THEOREM 1, Suppose dU has no isolated points. Then Re A(U) has 
finite defect in Cii(dU) if and only if S2\U has a finite number of com­
ponents and A(U)is pointwise boundedly dense in H™(U). 

In this announcement, we wish to elaborate on this result, and to 
state answers to questions (1) and (2) in terms of analytic capacity. 

2. A theorem on uniform approximation. By K we will always 
denote a compact subset of the complex plane. The algebra R(K) is 
the uniform closure on K of the rational functions with poles off K. 
The algebra A(K) consists of the continuous functions on K which 
are analytic on the interior K° of K. With this notation, A (K) con­
sists of the functions in A(K°), extended in all possible continuous 
ways to K. Consequently we can deduce from each theorem about 
A(U) a corresponding theorem about A(K), by setting U=K°. In 
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turn, the theorems we will state for R(K) will all follow from the 
version for A(K) and the following result, which extends Theorem 
3.4 of [4]. 

THEOREM 2. If (i) R(dK) = C(dK), and (ii) R(K) is pointwise 
boundedly dense in H°°(K°), then R(K) = A(K). 

Condition (i) is necessary, but condition (ii) is not. I t would be of 
interest to relax condition (ii). 

3. Pointwise bounded approximation. Necessary and sufficient 
conditions for the pointwise bounded density of A(U) in H°°(U) were 
given in [4], and were sharpened by Davie in [2]. In order to state a 
further strengthening of this characterization, we introduce more 
definitions. 

A curvilinear null set is a subset of zero outer length lying on a 
twice continuously differentiable curve. A <7-curvilinear null set is a 
countable union of curvilinear null sets. The analytic capacity of a 
planar set S is 

Y ( S ) = sup{ | ƒ'(«>) | :ƒ is analytic off some compact subset 

of S, l/l £ 1}. 
The continuous analytic capacity of a set S is 

a (S ) = sup{ | / (o>) | :ƒ as above, ƒ E C(S2)}. 

The open disc centered at 0O with radius 5 is denoted by A(20; 8). 

THEOREM 3. The following are equivalent : 
(i) A(U) is pointwise boundedly dense in H™( 17). 
(ii) y(D\ U) =a(D\ U) for each bounded open set D. 
(iii) There is a a-curvilinear null set E such that for each zE: (d U)\E, 

z ?* oo, there exists r ̂  1 satisfying 

. <*(A(s;r$)\£Q 
hm inf > 0. 

*-o y(A(z;6)r\dU) 
Theorem 3 is analogous to Vitushkin's Theorem (VIII. 8.2 of [3]) 

characterizing those K for which R{K) =A(K). An additional 
difficulty with pointwise bounded approximation is that one does not 
automatically get good bounds on the norms of approximating 
sequences. The proofs of both the necessity of (ii) and the sufficiency 
of (iii) depend not only on Vitushkin's constructive techniques, but 
also on the abstract tools of functional analysis, and especially on an 
argument involving the separation theorem for convex sets which 
stems from Ahern and Sarason [l ]. 
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Using Theorem 2, one obtains the following companion theorem for 
R(K). 

THEOREM 4. The following are equivalent : 
(i) R(dK)~C(dK), and R(K) is pointwise boundedly dense in 

H»(K°). 
(ii) y(D\K°) =y(D\K)for each bounded open set D. 
(iii) There is a cr-curvilinear null set E such that for each zÇz(dK)\E, 

there exists r^l satisfying 

. y(A(z;rô)\K) 
hm inf > 0. 

a-o Y(A(*; 5) H dK°) 

4. Algebras with finite real defect. Recall that A ( £7) is dirichlet on 
dU if Re A(U) is dense in CR(dU). Also, ^4(Z7) is hypodirichlet if the 
defect of Re A(U) in Cii(dU) is finite, while the linear span of 
log\A(U)~i\ is dense in C ^ W 

Theorem 1 can be restated in the following form, with the aid of 
Theorem 3. 

THEOREM 5. Suppose that S2\U has a finite number of components, 
none of which are points. Then the following are equivalent: 

(i) Each zÇzU has a finite dimensional set of representing measures 
(ondUJorA(U)). 

(ii) Re A ( U) has finite defect in CR(Ô U). 
(iii) If Y is any component of S2\U and V=S2\Y, then A(V) is a 

dirichlet algebra on d V. 
(iv) A ( U) is pointwise boundedly dense in H°° ( U). 
(v) If ô > 0 is sufficiently small, then 

a(A(z]d)\U) ^ Ô/4, zGdU. 

(vi) There is a a-curvilinear null set E such that for all zÇz(dU)\E, 

. £a(A(z;ô)\U) ^ 
hm inf > 0. 

«—o 5 

Under the equivalent conditions of Theorem 5, we can describe 
explicitly the real functionals on C(dU) which are orthogonal to 
A(U). Indeed, suppose there are r components Ei, • • • , Er of S2\U. 
Let 7y be a cycle in U which surrounds E3- in the usual sense of con­
tour integration. Under our hypotheses, every function uÇzCn(dU) 
has a continuous extension ütoU harmonic on U. Define Lj(u) to 
be the increment of the harmonic conjugation function of ü along 7y. 
Then the functionals u-*Lj(u) are continuous real functionals on 
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CR(ÔU) which are orthogonal to A(U), and Z*, • • • , Lf form a basis 
for the space of real functionals orthogonal to A (U). In particular the 
defect of Re A ( U) in CR(d U) is equal to r - 1 . 

Now suppose the first 5 of the Ej have interior while the remaining 
r — sdo not. Let q3SEf, 1 £j£s. Then the linear span 

of log | ,4 (C/)-11 
has defect r — s (r —1, if 5 = 0) in Cr(dU). The closed linear span of 
l og l^C/ ) - 1 ! coincides with the closed linear span of Re A(U) and 
the functions log) (z — qj)/(z — qi)\, 2 Sj^s. 

The corresponding theorems for A(K) and -R(JRC) are as follows. 
THEOREM 6. Suppose S2\K° has only a finite number of components. 

Then the following are equivalent : 
(i) Each zÇzK° has a finite dimensional set of representing measures 

(ondK,forA(K)). 
(ii) Re A (K) has finite defect in CR(ÔK). 
(iii) A (K) is a hypodirichlet algebra. 
(iv) A (K) is pointwise boundedly dense in H°°(K°). 
(v) If 8 > 0 is sufficiently small, then 

a(A(z;Ô)\K°) è 8/4, z G dK. 

(vi) There is a a-curvilinear null set E such that for all zÇz(dK)\E, 

hm inf > 0. 
a-*o ô 

When finite, the defect of Re A (K) in Cn{dK) is equal tor — 1, where r 
is the number of components of S2\K°. If furthermore gi, • • • , <Zr-i be­
long to the interiors of distinct components of S2\K°, then the linear span 
of Re A(K) and the f unctions log|s—qi\, • • • , log|s—# r-i | is dense 
in CR(ÔK). 

THEOREM 7. Suppose S2\K° has only a finite number of components. 
Then the following are equivalent : 

(i) Each ZELK° has a finite dimensional set of representing measures 
(ondK,forR(K)). 

(ii) Re R(K) has finite defect in CR(ÔK). 

(iii) R(K) is a hypodirichlet algebra. 
(iv) R(K) is pointwise boundedly dense in ir°°(i£0), and R(dK) 

(v) If S > 0 is sufficiently small, then 

y(A(z;Ô)\K) £ */*• zGdK. 

(vi) There is a <r-curvilinear null set E such that for all z(~(dK)\E, 
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lim mf > 0. 

When finite, the defect of Re R(K) is equal to r — 1 (0, if r = 0), where r 
is the number of components of S2\K°. 

I t is easy to formulate geometric criteria which ensure the validity 
of the estimate (vi). Using the fact that the analytic capacity of a 
continuum is comparable to its diameter, we can state the following 
corollary. Recall that the inner boundary of K consists of those points 
zÇîdK which do not lie on the boundary of one of the components of 
S2\K. 

THEOREM 8. If dK is connected, and the inner boundary of K is a a-
curvilinear null set, then R(K) is pointwise boundedly dense in H°°(K°), 
and R(K) is a dirichlet algebra. 

When K has a connected complement, the first and second con­
clusions of Theorem 8 reduce respectively to the Farrell-Rubel-
Shields Theorem (VI.S.l of [3]) on pointwise bounded approxima­
tion, and the Walsh-Lebesgue Theorem (II.3.3 of [3]) on uniform 
approximation by harmonic polynomials in x and y. When the com­
plement of K has a finite number of components, we find ourselves 
in the situation treated by Ahern and Sarason [ l ] . The theorem, in 
the case in which the inner boundary is a t most countable, was ob­
tained by McCullough [7]. 

Proofs and further applications of these results in the case of di­
richlet algebras will appear in [5]. 
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1. Introduction. By Bott periodicity the classical groups, their 
classifying spaces, their homogeneous spaces, Im / and B lm J are 
infinite loop spaces, and hence the Dyer-Lashof operations act on 
their mod p homology for p a prime number. We will list the basic 
properties of the Dyer-Lashof operations in §2. These operations have 
been calculated in the homology of all these spaces, and the dual 
operations have also been computed. As applications one can cal­
culate the indecomposable elements of the homology of these spaces 
over the Dyer-Lashof algebra R and the AR-Hopf algebra maps be­
tween any two classical groups or any two of their classifying spaces. 
In this paper we will summarize our results for BU, BU (the con­
nected and infinité component versions of the classifying space of the 
infinite unitary group), 0, 5 0 , B Im / a n d Im / . 

These results have been applied to the study of H% (F) and H^ (BF) 
by J. P. May [9] and I. Madsen [7]. They are also useful in cobor-
dism theory (see for example T. torn Dieck [5, p. 396]). 

The author is very grateful to J. Peter May for his guidance, sug­
gestions and generosity with his time throughout the preparation of 
this paper. 

NOTATION. All elements of a graded object will be indexed by their 
degree with the exception of the Chern and Wu classes. All homology 
and cohomology will have Zp coefficients for p a prime number. When 
a result differs for p an odd prime and p = 2 then the result f or p = 2 
will be placed in square brackets. 

2. The Dyer-Lashof operations. The homology of an infinite loop 
space B has natural homomorphisms Qi\H4(.{B)-J>'H^{B) for i ^ O of 
degree 2i{p — 1) [of degree i] which have been studied by S. Araki and 
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T. Kudo [3], W. Browder [4], E. Dyer and R. Lashof [ó], G. Nishida 
[10] and J. P. May [8]. Theorem 1 summarizes some of their results. 

THEOREM 1. The Dyer-Lashof operations satisfy the following prop-
per ties: 

(a) <2°(0)=0 and <2*'(<Ê)=0 if i>0 where </>EH0(B) is the identity 
element for the loop product in H% (B). 

(b) Q*(* )=0 i f2 t<deg* [ifi<degx]. 
(c) Qi(x)=xpif2i = degx [ifi = degx]. 
(d) cr^oQi = Qioa^ where cr^:IH^(QlB)—^H^l(B) is the homology sus­

pension map. 
(e) (Multiplicative Cartan formula) Qr(xy) =]Ci-o Qi(x)Qr"i(y). 
(f) (Comultiplicative Cartan formula) 

t o Qr(x) = E Z Q'(*0 ® QrW) 

where \//(x) =^Z x'®x". 
(g) X°(?* = Q*°X wfe r̂e x ^ ^ conjugation of H^ (B). 
(h) (Nishida relations) Let P% :H*(B)-*H*(B) of degree - 2s(p-1) 

[of degree —s\be dual to the Steenrod operation P*. Then 

P* o Qr = X) (-l)t+*(* ~ M '(* -l)-ps + pi)Qr~s+ioPÎ 

We use the convention (i, j) = ( i+ j ) \/i \j lifi^O and f ^ 0 while (i} j) = 0 
ifi<0orj<0. Thus the above sum is taken over all integers i. 

(i) (A dem relations) Ifa>pb then 

Qa o Qb = X) ( - l)a+i(pi - a, a - (* - l ) i - i - l ) ^ 6 " * o <)<. 

DEFINITION 2. The Dyer-Lashof algebra R is the quotient 
algebra F/J where F is the free associative algebra generated by 
{Qr, $Qr+l \r ^ 0} [by {Qr \ r è 0} ], and J is the ideal of F consisting of 
all elements which annihilate every element of every infinite loop 
space. 

3. Results on BU and BU. Recall that H*(BU) =P{cn\n^l} as 
algebras where cn is the Chern class of degree 2n, c0 = l and \p(cn) 
=]C?-o Ci®cn„i. Let a2» =(£?)* and P2n = c» in the dual basis of the 
basis of H*(BU) which consists of monomials in the Chern 
classes. Then H^(BU)=P{a2n\n^l} as algebras with ^(a2n) 
~]C?-o Ö2*®ö2n-2t, and {p2n|w^l} is a basis for the primitive ele­
ments of H*(BU). For r^O we have the duals of the Dyer-Lashof 
operations Qr*:H*(BU)-*H*(BU) of degree - 2 r ( £ - l ) [of degree 
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—Y ] . Theorems 3 and 4 are our main results on B U. 

T H E O R E M 3 . InH*(BU)forr^Oandn^l, 

Ör(P2n) = ( - l ) r + n ( w - 1, f - W)p2n+2r(j>-l) 

[Ö2r(P2») « (» - 1, f - W)p2»+2r], 

and 

ör(ö2n) = (—l)r+w+1(w> r — w — l)a2n+2r(p-i) + decomposaUes 

[Q2r(#2n) = (w, r — n — l)a2n+2r + decomposables]. 

T H E O R E M 4 . InH*(BU)forr^Oandn^l, 

Q*(cn) = (- l) r + w(w - r(£ - 1) - 1, pr - ttK-ro>-i) 

[(?*'(£») = (n — r — 1, Ir — w)c*_r]. 

Theorem 3 is proved by using the comultiplicative Cartan formula, 
the Nishida relations and Bott periodicity. An algorithm can then be 
given for computing Qr(a2n) [Q2r(#2n)] by induction on n+r(p — l) 
and for fixed n+r(p — l) by induction on n using the following seven 
properties that the Qr satisfy on H*(BU): (a), (b), (c), (e), (f), (h) of 
Theorem 1 and Theorem 3. Theorem 4 is now proved by defining 
homomorphisms R% on H*(B U) by 

R**(cn) = ( -1)* "(n — s(p - 1) - 1, ps - tt)c„_.(ip_i) 

[R*(cn) = (n — s — 1, 2* — w)c„-,] 

and insisting that the R% satisfy the multiplicative Cartan formula. 
Then the dual maps R* can be shown to satisfy the above seven prop­
erties. Hence R8 = Q8 for all s a O by the algorithm for computing the 
Dyer-Lashof operations on H*(B U). 

Recall that H*(BXJ)=H*(BU)®ZP(Z) as Hopf algebras where 
ZP(Z) is the group algebra of the integers over Zp. Elements of 
i ï*(BU) are written x® [i] for xEH*(BU) and i&ZCZp(Z). Since 
the canonical inclusion BU—+BU induces the map x—»x®[0] in 
homology for xÇzH*(BU), the following theorem together with our 
knowledge of the Dyer-Lashof operations on H*(BU) tell us how the 
Dyer-Lashof operations act on i ï*(BU). 

THEOREM 5. In i7*(BU) for n è l , (?n(l® [l])=*Yn(p2(P-i))® [p] 
[Q2n(l ® [l ]) =ö2n® [2]] where 7n(p2ü>-i)) is ( 4 - i )* in the dual basis of 
the basis of H*(B U) which consists of monomials in the Chern classes. 


