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Let 2 be an open subinterval of the real line; suppose that 0EQ.
The purpose of this announcement is to describe an injection of
L¥o(Q) into a commutative algebra of operators. The injection is a
useful substitute for the two-sided Laplace transformation; in case
Q is the whole real line, the injection can be extended to a space B
of distributions whose supports may be all of (— «, ©) (there are
no growth restrictions: see §7). If the distributional derivative of an
arbitrary distribution R belongs to the space B, then R also belongs
to B and R has an initial value (because R equals a continuous func-
tion in some left-neighborhood of the origin). Thus, it is possible to
assign initial conditions to the unknown distribution in a differential
equation whose right-hand side belongs to the space 8B: see 7.3.

1. Preliminaries. If fi( ) and f2( ) belong to the space L'*(Q) (of
all the complex-valued functions which are integrable on each com-
pact subinterval of the open set ), we denote by fi/Afe( ) the function
defined by

AD  AARO =~ [ 16~ o (for all ¢in ©).

2. The space of test-functions. Let WQ be the space of all the
complex-valued functions which are infinitely differentiable on € and
whose every derivative vanishes at the origin. Thus, w( ) belongs to
WQif w( )EC*(Q) and w® (0) =0 for every integer 2= 0.

2.1. The space of generalized functions. Let @Q be the space of all the
linear operators 4 which map WQ into WQ such that the equation
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A(wy N\ wa)(t) = (Awy) A wa(l) (for all £in Q)

holds whenever w;( ) and w:( ) belong to WQ. As usual, if w( ) be-
longs to W1, then Aw( ) denotes the image of w( ) under the operator
A.
2.2. The injection. If f( ) belongs to L'°¢(Q) we denote by {f(f)} the
operator w( )—(fAw)’( ) which assigns to each w( ) in WQ the
derivative of the function fAw( ).

THEOREM. The linear transformation f( Y—{f(t)} is one-to-one and
maps L'°¢(Q) into the linear space GSD.

2.3. The operational calculus. The linear space G is a commutative
algebra with unit element 1 (the identity operator), multiplication
being the usual composition of operators.

If f(t) =1 for tEQ, then {f(f)} is the identity operator 1 (defined by
1w( )=w( ) for all w( ) in WQ). The differentiation operator D
(defined by Dw( ) =w’( ) for all w( ) in WQ) is an invertible element
of the algebra @ such that the equation

(2.4) {ANARO} = {AO}D{ L0}

holds for every fi( ) and fo( ) in L*(Q). The preceding properties
imply all the usual operational formulas. For example, if f( ) is locally
absolutely continuous on €, then

(2.5) {ro} = p{s0} - 70D,

whence

(2.6) {sint} = 1 and {cost} = D{sint}.
We can now solve problems such as

1 ¥ () + () = sec(nt/20) (—w <t <w);

to that effect, set @=(—w, w), co=9(0), c1=9'(0), and inject both
sides of (1) into @Q; from (2.5) it follows that

D D D ¢
{y(l)} = ¢oD +a + D! {sec I—} ;
D241 D? 41 D41 %)

from (2.4), (2.6), and (1.1) it therefore results that

. o . ru
y(f) = cocost + ¢y sint — f [sin(t — u)] sec ” du.
] @

2.7. Other operational calculi. Mikusifiski's injection (of L1°°(0 , )
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into the Mikusifiski field) is an extension of the Laplace transforma-
tion; analogously, our injection f( )~ { f(t)} can be compared with
the two-sided Laplace transformation. However, the two-sided
Laplace transforms

et — et} and g{e 1t}

are restrictions of the same function to different vertical strips;
contrastingly,

2D D? — DZ
and {e 't} = —-—,
1— D? D?— 1
where Z = {sgn ¢} = {/|¢| }. More generally, if —o <A< then

{eml} = M .

Dz —1
A problem which is not Laplace transformable is discussed in 7.8.

fet = o} =

3. Direct sum decomposition. Let 1.( ) be the Heaviside step
function; weset 1,={1,()}, 1-=1—1,,and

(Ba) = {BA:4 € a2} (when B € @9).

Both (1_@) and (1,.@) are ideals in the algebra @, and their direct
sum equals @Q:

e = (1_@) & (1.@).
In fact, 1_ (respectively, 1) is a projector of @Q into (1_@) (respec-
tively, (1,.@)), (1)2=1=(1,)%and (1.)(1,) =0.
3.1. REMARK. If h( )ELY(Q) then {h_(f)} E(1-@) and {hy(t)}
€(14+@), where () =1,( )2( ) and

h()=h()— ().

4. Translation properties. If — o <x< o we define the function
12( ) by 15(t)=0 for —|x| =t<|x|, and by 1=({) =1 for all other
values of t. Further, we set 17= {1=(¢) }.

4.1. THEOREM. Suppose that >0 and N=0; if h( ) ELY°(Q) then
the equation

(4.2) PO} = { Z”: k[h_(t + ka+ N) + byt — ka — }\)]}

1 —cle =m0

kolds for any complex number c.
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4.3. Comments. The series inside the right-hand bracket is a locally
finite sum. Theorem 4.1 is the two-sided extension of Theorem 5.29
in [4]. If A( ) is a periodic function having period >0, then

{1 = 1=}
O} = ——F—

5. The topology. Let the function-space W be equipped with the
topology of pointwise convergence on the interval 2; since @R consists
of mappings of WQ into the topological space WQ, we can equip GQ
with the product topology. The following results have been proved by
Harris Shultz: the topology of the linear space @ is sequentially
complete, locally convex, and Hausdorff; moreover, the multiplica-
tion of the algebra @2 is sequentially continuous.

5.1. The translation operator. If — o <x< o we set T,={T.()},
where

() = — 1_(®)1=() + 1,.(=)1%().

It turns out that DT,=1im{e—1F,(t)} (as e»0+), where F.( ) is
the characteristic function of the interval (x, x-}¢); this indicates that
DT, corresponds to the Dirac distribution 8. concentrated at the
point x. If £( ) € L°(Q) is a periodic function of period a >0, then the
equation

(5.2) { h(t)}ki ciTha = {h(t):z c,,r,,,,(z)}

holds for any complex-valued sequence ¢ (¢=0, +1, +£2, +3, - - ).

6. Initial values. Given 4 and B in G, we shall say that 4 equals
B on an interval if Aw(f) =Bw(t) for all ¢ in the interval and for all
w( ) in W(— », »). For example, any element of (1.@) equals 0 on
(— ©, 0)-

6.1. DEFINITION. A number ¢ is called an initial value (of B) if
c=lim f(¢) (as t—0—) for some function f( ) such that {f()} equals B
on some interval (A, 0).

6.2. REMARKS. If the set of initial values (of B) is not void, it con-
tains a unique element B(0—); we shall see in 7.3 that the operator
DB~ B(0—)D corresponds to the distributional derivative.

7. A new space of distributions. Let B (respectively, 8,) be the
space of all the Schwartz distributions whose supports are contained
in the half-open interval (— », 0] (respectively, [0,%)). Let B_ be
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the space of all the elements of B, that are regular in some open
neighborhood of the origin; we set

B = B+ B,.

Thus, B is the family of all the sums S4 R, where R is a distribution
with Supp RC [0, »), and where SEB_ (that is, Supp S is contained
in (— o, 0] and there exists a distribution 8% corresponding to a
function f( ) such that S—9% is zero in some open interval containing
the origin). It turns out that B is the direct sum B_®B,: if FEY
there exists a unique pair (F-, F,) in B_XB, such that F=F_+F,.
If FE®B and GEDB we set

F®G=—F_xG_+ F %G,

where * is convolution in the sense of [3, p. 384]. By adjoining the
multiplication (F, G)=FQ®G to the linear space B we obtain a com-
mutative ring. Denoting by 9% the distribution corresponding to a
function f( ), we have (8%1) ® (8%:) =3°(i/\f2)-

If FEB and w( YEW(— », ») then F® (0%’) is the distribution
corresponding to a function in W(— «, ») that we shall denote by
{ F}w( ); it turns out that { F}w( ) belongs to W(— =, «). Let { F}
denote the mapping w( )—{F}w( ) (of W(— ®, =) into itself); if 5,
is the Dirac distribution, then

(7.1) {8,} = DT, (= o0 <2< x),

7.2. THEOREM. The transformation P—{ F} is a linear injection of B
into @(— o, ®) such that {3} = {f(t)} for f( YEL¥(— 0, ») and
{F\® Fy} = {F\}D-'{F;}  (for Fy and F; in ).
7.3. THEOREM. If R is a distribution whose distributional derivative

belongs to B, then the set of initial values (of {R}: see 6.1) contains a
unique element which we shall denote by (R, 0—); further,

{0R} =D{R} —(R,0-)D.
as usual, OR denotes the distributional derivative of R.

7.4. Differential equations. Given S in B, and let e (=0, 1,
2, + - -, n) be a set of at least two complex numbers; if y is a distribu-
tion such that

(7.5) @™+« - -+ a9 + ao)y = S,

then the distributional derivative d*y belongs to B for 0 Sk <#; from
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7.3 it therefore follows that we can take into account the initial values
(9,, 0— ) when 0 v <. The equation (7.5) implies that

k—1

(7.6) {o*y} = Dr{y} — 3 (0’y, 0—)D*~ (for 0 = k& = n).
v=0
7.7. THEOREM. If ¢x (k=0, 1, 2, - - -, n—1) is a sequence of com-

plex numbers, there exists one and only one distribution y satisfying (7.5)
and the initial conditions

(3’, 0—) = co, (33’, 0“‘) a2 R (3"“13’, 0—> = Ca—1-

7.8. Anexample. The distributional equation

(1) %y +y= 2 Sur

k==—o0

(discussed on p. 128 of [1]) cannot be solved by the method of funda-
mental (or “elementary”) solutions—nor can it be solved by using the
finite Fourier transform [5, pp. 335-342]. However, it can readily be
solved by injecting it into @(— «, »): from (1), (7.6), and (7.1) it
follows that

(2 (D 4+ 1){y} = coD*+ 1D + Y DTy,

k=—o0

where ¢o= (3, 0—) and ¢;=(dy, 0—). A particular solution results by
setting ¢o=¢,=0; solving (2) for {y} , we can use (2.6) to obtain

1 0 0
= D T r = i t T )
Ul =g 2 I T = oot DT
from (5.2) it now follows the answer

3) y() =sin ¢ i To(f) = (1 -+ [—t-:D sin ¢

k=0 211'

(— o <t< ®); as usual, [t/27] is the greatest integer <t/2w. The
answer (3) cannot be obtained by Fourier transform methods.

7.9. ACKNOWLEDGMENTS. At the origin of Theorem 7.7 is an
article by César de Freitas [2]; his “opérateurs de Heaviside” are
linear combinations of functions with distributions of finite order
whose supports are locally finite; these distributions form a proper
subspace of our space ¥B. Harris Shultz gave me the idea that
F®GED whenever both FEB and GESD.
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