THE ORDER OF THE IMAGE OF THE J-HOMOMORPHISM

BY MARK MAHOWALD

Communicated by Raoul Bott, June 4, 1970

ABSTRACT. This note announces a proof of the order of the image of the *J*-homomorphism and gives several other results in homotopy theory which are consequences of the proof.

The set $\Omega^n S^n$ can be identified with the set of all base point preserving maps of S^n into itself. SO(n), acting on S^n as R^n with a point at infinity, is also a set of base point preserving maps of S^n onto itself. This defines $SO(n) \subset \Omega^n S^n$. The induced map in homotopy is called the J-homomorphism. If we allow n to go to infinity we have the stable J-homomorphism. By Bott's results [3] $\pi_j(SO) = Z$, $j \equiv -1 \mod 4$, and $= Z_2 j \equiv 0$, $1 \mod 8$, j > 0, and zero otherwise. Adams [1] showed that the Z_2 summand maps monomorphically and Milnor and Kervaire [6] showed that the Z group in dimension 4j-1 maps nontrivially and its image generates a subgroup of at least a certain order λ_j' . Adams [1] showed that the order was either λ_j' or $2\lambda_j'$ and if $j \equiv 1$ (2) it was λ_j' . Thus only the two primary part is in question and there only for $j \equiv 0$ (2). Let λ_j be the two primary part of λ_j' . If $4j \equiv 2^{\rho(j)} \mod 2^{\rho(j)+1}$ (which defines $\rho(j)$) then $\lambda_j = 2^{\rho(j)+1}$. We prove:

THEOREM 1. The 2-primary order of the image of J in stem 4j-1 is λ_j .

The proof has several corollary results which have some interest. The first result is rather technical but still has some interest. The naming of elements in $H^{**}(A)$ is that given in [5].

THEOREM 2. The elements P^ic_0 , $P^ih_1c_0$, $i \ge 1$, P^ih_2 , $i \ge 1$, in $H^{**}(A)$ represent the image of J in dimension $j \equiv 0$, 1, 3 mod 8. In dimension 8j-1 the "tower" which ends at the "Adams edge" represents the image of J in that dimension.

These elements were known to have the desired e-invariant property [1] and were believed to be in J. Their Whitehead product behavior has been investigated ([2] and [4], for example).

Let $M = Z_2 + Z_2$ (be the module over A with one generator; μ in

AMS 1970 subject classifications. Primary 55E10, 55E50, 55H15.

Key words and phrases. Stable homotopy groups of spheres, J-homomorphism, cohomology of the Steenrod algebra.

dimension zero and $Sq^1 \neq 0$. Let $P(x_1, \dots)$ be a polynomial algebra on generators x_i with bidegree $(2, 2^{i+2}+1)$. Consider the differential $d(x_i) \rightarrow x_{i-1}^2 x_1$ in P. Let H(d) be the homology under d and B(d) = im d.

For $\alpha \in P$ let the bidegree of α be (α'_s, α'_t) . We will be only interested in the values of α'_s modulo 4 and α'_t modulo 12 so take (α_s, α_t) so that $\alpha_s \equiv \alpha'_s \pmod{4}$, $\alpha_t \equiv \alpha'_t \pmod{4}$ but $5\alpha_s < \alpha_t - \alpha_s$.

THEOREM 3. If $5s \ge t - s + \epsilon$ where ϵ depends on the congruence class of $s \mod 4$ and $\epsilon \le 6$, then

$$\operatorname{Ext}_{A}^{s,t}(M, Z_{2}) = \sum_{\alpha \in H(d)} \operatorname{Ext}_{A_{0}}^{s-\alpha_{s}, t-\alpha_{t}}(M \otimes A / / A_{1}, Z_{2})$$

$$\oplus \sum_{\alpha \in B(d)} \operatorname{Ext}_{A}^{s-\alpha_{s}, t-\alpha_{t}}(M \otimes A / A(Sq^{3}, Sq^{1}), Z_{2}).$$

COROLLARY 4. If Q is an A module which is free over A_1 , the subalgebra generated by Sq^1 and Sq^2 , then $\operatorname{Ext}_A^{s,t}(Q, Z_2) = 0$ for $5s \ge t - s + \epsilon$.

THEOREM 5. Let X be a space in the stable category so that $\Sigma X = RP^2$. If $E_{\tau}(X)$ is the Adams spectral sequence converging to $\pi_*^{g}(X)$, then then $E_5^{g,t} = E_{\infty}^{g,t}(X) = 0$ for $5s \ge t - s + \epsilon$ unless

$$s = 4k,$$
 $t - s = 8k,$ $8k + 1,$ $8k + 2,$
 $= 4k + 1,$ $t - s = 8k + 1,$ $8k + 2,$ $8k + 3,$
 $= 4k + 2,$ $t - s = 8k + 2,$ $8k + 3,$ $8k + 7,$
 $= 4k + 3,$ $t - s = 8k + 4,$ $8k + 8,$ $8k + 9,$

in which cases the groups are Z_2 .

These elements represent the generators of the image of J and μ_j [1] on the bottom cell and the elements of order two in the im J and μ_j coextended on the top cell.

THEOREM 6. There is a space Im J and a map $f: S^0 \rightarrow \text{Im } J$ so that f_* maps the image of J and the μ 's monomorphically onto the homotopy of Im J.

In [1] a map $f: \Sigma^8 X \to X$ which represents an extension of a coextension of 8σ is studied. There it is proved that all iterations of f are essential.

THEOREM 7. If $\alpha: S^k \to X$ is a stable map then

$$S^{k+8j} \xrightarrow{\sum {}^{8j}\!\alpha} \Sigma^{8j} X \xrightarrow{f^j} X$$

is inessential for some j unless lpha is in one of the classes given by Theorem 5.

Some comments on the proof. Let the spectrum bo be the connected BO spectrum. Then we construct a Novikov resolution of S as follows

$$\vdots$$

$$S_{\sigma} \to S_{\sigma} \wedge bo$$

$$\vdots$$

$$S_{1} \to S_{1} \wedge bo$$

$$S \to S \wedge bo.$$

We apply the E_2 of the Adams spectral sequence to this tower and get a spectral sequence which converges to $H^{**}(A)$ except for s=t. If we consider the resolution $X \wedge S_{\sigma}$, where X is defined in Theorem 5, we can make an explicit calculation. Let

$$E_1^{s,t\sigma} = \operatorname{Ext}_A^{s-\sigma,t-\sigma}(\tilde{\boldsymbol{H}}^*(X \wedge S_{\sigma} \wedge bo), Z_2).$$

PROPOSITION 8. $E_2^{s,l,\sigma} = \sum_{\alpha \in P^{\sigma}} \operatorname{Ext}_A^{s-\alpha_l,l-\alpha_l}(M \otimes A//A_1, Z_2)$ for $s > \sigma$ where P^{σ} is the set of σ -degree polynomials in the polynomial algebra introduced above.

Proposition 9. $E_3^{s,t,\sigma} = E_{\infty}^{s,t,\sigma}$ for $s > \sigma$ and thus is given by Theorem 3.

Note that Proposition 9 alone gives an edge of $3\sigma > t-2$. The sharpened version of Theorem 3 follows from Proposition 9 and a closer analysis of the nature of $\operatorname{Ext}_A^{s,t}(M, \mathbb{Z}_2)$.

The most direct route from Proposition 8 to the main theorem requires a geometric realization of the E_2 term of the above spectral sequence for S. Using this resolution and the homotopy functor we get a spectral sequence whose $E_2^{\sigma,t}$ term has an edge of $5\sigma \ge t-\sigma+\epsilon$. The image of J has filtration 1. From this information the order of im J should follow directly but no direct route has been found. Hence to complete the argument, consider the space Y which is the fiber of the map $S \rightarrow K(Z, 0)$, and consider the resolution of Y given by $\cdots \rightarrow Y \land S_{\sigma} \rightarrow Y \land S_{\sigma-1} \rightarrow \cdots$. Calculation of the sort given in the proof of III 7.3 of [4] and applied to elements of filtration zero and one give a proof of Theorems 1 and 2.

REFERENCES

J. F. Adams, On the groups J(X). IV, Topology 5 (1966), 21-71. MR 33 #6628.
 D. W. Anderson, The e-invariant and the Hopf invariant, Topology 9 (1970), 49-54.

- 3. R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70 (1959), 313-337. MR 22 #987.
- 4. M. E. Mahowald, The metastable homotopy of Sⁿ, Mem. Amer. Math. Soc. No. 72 (1967). MR 38 #5216.
- 5. M. E. Mahowald and M. C. Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967), 349-369. MR 35 #4924.
- 6. J. W. Milnor and M. A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, Proc. Internat. Congress Math. (Edinburg, 1958) Cambridge Univ. Press, New York, 1960, pp. 454-458. MR 22 #12531.

NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201