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Introduction. The main result of this paper is that a mapping ƒ of 
the w-sphere dBn+1, ws^4, onto itself is cellular if and only if ƒ has a 
continuous extension which maps the interior of the n+1 ball Bn+1 

homeomorphically onto itself. Since a map of a 2-sphere onto itself is 
cellular if and only if it is monotone, this theorem extends a result of 
Floyd and Fort [ó], who prove the corresponding theorem for mono
tone maps on a 2-sphere. 

Preliminaries. A compact mapping ƒ \Mn-^X is cellular if for each 
x(EX, there is a sequence G, C2, • • • of topological w-cells such that 
f~l(x)=r\^L1 d and CVnCIntC*. If X is a topological space, H(X) 
is the group of all homeomorphisms of X onto itself. Edwards and 
Kirby showed that for any compact manifold Af, H(M) is locally 
contractible and therefore uniformly locally arcwise connected. I t 
was shown [7] that any mapping of a manifold onto itself which can 
be uniformly approximated by homeomorphisms is cellular. (See 
also [4].) Armentrout (n = 3) [ l ] and Siebenmann (n^5) [lO] have 
proven that any cellular mapping of a manifold onto itself can be 
uniformly approximated by homeomorphisms. 

LEMMA 1. Suppose f :dBn-^dBn can be approximated by homeomor
phisms. Then f can be extended to a map which is a homeomorphism on 
the interior of Bn. 

PROOF. Since ƒ can be uniformly approximated by homeomor
phisms and H(dBn) is uniformly arcwise connected, there is an arc 
* such that $1 =ƒ and $tEH(dBn), for 0 ^ < 1. Each point of Bn can 
be represented in the form tx, where x£zdBn and 0 = / = l . We define 
F:Bn->Bn by F(tx)=t$t(x), for all xEdBn. We note that F is con
tinuous, extends ƒ and is a homeomorphism when restricted to the 
interior of Bn. 

Therefore, if W5^4 and f:dBn+l—>dBn+l is cel lular/can be extended 
to a map which is a homeomorphism on the interior of Bn+1. 
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A map has property UV00 if for each x and each open set U contain
ing f^1(x)i there is an open set V containing f~l(x) such that VQU 
and V is null-homotopic in U. 

LEMMA 2. Let M be a manifold and F:MX(0, l ] - » l f X(0, l ] be a 
map such that F~l(MXl)~MXl and F/MX(0, 1 ) :MX(0 , l)->Af 
X(0, 1) is a homeomorphism, then F/MXI:MX1->MX1 is a UV00 

map. 

PROOF. We identify M with MXI. We make use of the following 
auxiliary maps: for each 3, define ird:M—>MX(1 — d) by Td(x) 
= (*, 1 - 3 ) and£: ikfX(0 , l ] - » i l f b y ^ , / ) = (x, 1 )=# . 

Let £7' be open in M with f~l(b)CU'. £/'X(0, l ] is open in M 
X(0, l ] . Therefore, there is a [/such that : 

(a) U is open in MX(0, l ] , 
(b) UCU'XQ, 1]. 
(c) ƒ(£/) is open in Af X(0, l ] , 
(d) F-\b)CU. 

Now choose Jo < 1 and an open cylinder, C, about ô X Do, l ] such that 
CCf(U). We note that : 

tKQ is open in JkfX(0, l ] , tKQCU, f-l(P* [h, l])Cf~l(C). 
Let 7]=d{b, C);rj>0. Let ô be chosen so that 
(a) iV2 5(/-1(&))C/"1(0. 
(b) d(x,y)<28=*d(f(x),f(y))<ri. 
Let V = N8(j-l(b))r\M. We note that if a? is an element of TS(V), 

then ƒ(*) is an element of iV„(&)fWX(0, 1)CC. 
Since C is a cell we can define a homotopy G: CXI-+C so that 

(i) xec°=*G(x, oecncAfx(of i)). 
(2) G(x, 0 ) = * . 
(3) 3 sGikf X(0, 1) such that G(x, 1) =«, for all xGC. 

We now can define the desired homotopy H: VXI-+U', by H(x, t) 
= PtKG{fr*(%), t)). Thus, H(x, 0)=pf-i[G(fTS(x), 0)] ^ / ^ C M * ) ) 
= x. 

#(a;, 1) = pf-^Gifwsix), 1)] = ^ ( s ) = constant. 

The continuity of ƒ follows from that of G, so all that remains to be 
shown is that H(x, t)EU', for all x& V, V J £ J. 

^ G F = ^ Tra(tf) G 7ra(F) =>ƒ(»«(*)) G C C\ M X (0, 1) 

=*G(fvê(x),t) ecnB°=* 
t h a t / - 1 is defined and f-^G (fir s(x), t)]ef~l(C)C UC U'XQ, l ] . 
ThusPCf-^GCM*), *)])=#(*, 0 G ^ . 
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Let MC.X. M is collared if there is a homeomorphism h\ MX (0, 1 ] 
—>nbd of M such that h(m, l)=m, for all rnÇzM. M. Brown proved 
that the boundary of any manifold with boundary is collared [3], 
Therefore, we have the following corollary. 

COROLLARY. Let M be a manifold with boundary and let ƒ : M-+M 
be such that ƒ restricted to the interior of M is a homeomorphism. Then 
f/dM is a UV°°-raa£. 

Using McMillan's criteria for cellularity, [9] it can easily be shown 
that if ƒ : Mn->Mn is a UV°°-map and if Mn = S* o r w ^ S , then ƒ is a 
cellular map. (Cf., Armentrout and Price [2] or Lacher [8].) We 
therefore have the following theorem: 

THEOREM. A mapping f of the n-sphere dBn+l
1 ^ ^ 4 , onto itself is 

cellular iff f has a continuous extension which maps the interior of BA 

homeomorphically onto itself. 

COROLLARY. Let M be an m-manifold, w è 5, with boundary. Let f 
be a map of M onto M such thatf/lnt M: Int Af—>Int M is cellular and 
f/dM:dM-*dM. Then f/dM is a UV00 map. In particular, if n^6, 
f/M is a cellular map. 

PROOF. Define g : Int M—>(0, <*>) by g(m) =d(m,dM). S ince / / In t M 
is a cellular map, by Siebenmann's theorem there is a homeomor
phism h such that for all x G I n t M, d(f(x)} h(x)) <g(f(x)). We define 
F:M->M by 

F(x) = h(x), x G Int Af, 

==ƒ(*), xEdM. 

F is continuous, for suppose there is a sequence, xni of points in Int M 
which converge to xÇ.dM. Let €>0 be given. By the continuity of/, 
3 N? n>N=*d(Jn(x)9f(x)) <e/2. Then for such n, 

d(F(fin),F(x)) = d(h(xn),f(x)) £ d(h(xn),f(xn)) + d(f(xn),f(x)) < e. 

Thus, by Lemma 2, F/dM=f/dM is a UV00 map. 
Armentrout's approximation theorem [ l ] and results of E. E. 

Floyd [5] make it possible to prove the corresponding result for three 
manifolds: For such M, if/: M—>M is a proper map such t h a t / / I n t M 
is cellular, then f/dM is cellular. 
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