A CHARACTERIZATION THEOREM FOR CELLULAR MAPS

BY WILLIAM HAVER¹

Communicated by Steve Armentrout, March 26, 1970

Introduction. The main result of this paper is that a mapping f of the *n*-sphere ∂B^{n+1} , $n \neq 4$, onto itself is cellular if and only if f has a continuous extension which maps the interior of the n+1 ball B^{n+1} homeomorphically onto itself. Since a map of a 2-sphere onto itself is cellular if and only if it is monotone, this theorem extends a result of Floyd and Fort [6], who prove the corresponding theorem for monotone maps on a 2-sphere.

Preliminaries. A compact mapping $f: M^n \to X$ is cellular if for each $x \in X$, there is a sequence C_1, C_2, \cdots of topological *n*-cells such that $f^{-1}(x) = \bigcap_{i=1}^{\infty} C_i$ and $C_{i+1} \subset \operatorname{Int} C_i$. If X is a topological space, H(X) is the group of all homeomorphisms of X onto itself. Edwards and Kirby showed that for any compact manifold M, H(M) is locally contractible and therefore uniformly locally arcwise connected. It was shown [7] that any mapping of a manifold onto itself which can be uniformly approximated by homeomorphisms is cellular. (See also [4].) Armentrout (n=3) [1] and Siebenmann $(n \ge 5)$ [10] have proven that any cellular mapping of a manifold onto itself can be uniformly approximated by homeomorphisms.

LEMMA 1. Suppose $f:\partial B^n \to \partial B^n$ can be approximated by homeomorphisms. Then f can be extended to a map which is a homeomorphism on the interior of B^n .

PROOF. Since f can be uniformly approximated by homeomorphisms and $H(\partial B^n)$ is uniformly arcwise connected, there is an arc Φ such that $\Phi_1 = f$ and $\Phi_t \in H(\partial B^n)$, for $0 \leq t < 1$. Each point of B^n can be represented in the form tx, where $x \in \partial B^n$ and 0 = t = 1. We define $F: B^n \to B^n$ by $F(tx) = t \Phi_t(x)$, for all $x \in \partial B^n$. We note that F is continuous, extends f and is a homeomorphism when restricted to the interior of B^n .

Therefore, if $n \neq 4$ and $f:\partial B^{n+1} \rightarrow \partial B^{n+1}$ is cellular f can be extended to a map which is a homeomorphism on the interior of B^{n+1} .

AMS 1970 subject classifications. Primary 5460; Secondary 5701.

Key words and phrases. Cellular maps, monotone maps, extending mappings, UV^{∞} maps.

¹ This paper represents a portion of the author's Ph.D. thesis, written under the direction of Louis F. McAuley to be presented to the faculty of the State University of New York at Binghamton.

A map has property UV^{∞} if for each x and each open set U containing $f^{-1}(x)$, there is an open set V containing $f^{-1}(x)$ such that $V \subset U$ and V is null-homotopic in U.

LEMMA 2. Let M be a manifold and $F: M \times (0, 1] \rightarrow M \times (0, 1]$ be a map such that $F^{-1}(M \times 1) = M \times 1$ and $F/M \times (0, 1): M \times (0, 1) \rightarrow M \times (0, 1)$ is a homeomorphism, then $F/M \times 1: M \times 1 \rightarrow M \times 1$ is a UV[∞] map.

PROOF. We identify M with $M \times 1$. We make use of the following auxiliary maps: for each ∂ , define $\pi_{\partial}: M \to M \times (1-\partial)$ by $\pi_{\partial}(x) = (x, 1-\partial)$ and $p: M \times (0, 1] \to M$ by p(x, t) = (x, 1) = x.

Let U' be open in M with $f^{-1}(b) \subset U'$. $U' \times (0, 1]$ is open in M $\times (0, 1]$. Therefore, there is a U such that:

- (a) U is open in $M \times (0, 1]$.
- (b) $U \subset U' \times (0, 1]$.
- (c) f(U) is open in $M \times (0, 1]$.

(d) $F^{-1}(b) \subset U$.

Now choose $t_0 < 1$ and an open cylinder, C, about $b \times [t_0, 1]$ such that $C \subset f(U)$. We note that:

 $f^{-1}(C)$ is open in $M \times (0, 1]$, $f^{-1}(C) \subset U$, $f^{-1}(b \times [t_0, 1]) \subset f^{-1}(C)$. Let $\eta = d(b, \tilde{C}); \eta > 0$. Let δ be chosen so that

(a) $N_{2\delta}(f^{-1}(b)) \subset f^{-1}(C)$.

(b) $d(x, y) < 2\delta \Rightarrow d(f(x), f(y)) < \eta$.

Let $V = N_{\delta}(f^{-1}(b)) \cap M$. We note that if x is an element of $\pi_{\delta}(V)$, then f(x) is an element of $N_{\eta}(b) \cap M \times (0, 1) \subset C$.

Since C is a cell we can define a homotopy $G: C \times I \to C$ so that (1) $x \in C^{\circ} \Rightarrow G(x, t) \in C \cap (M \times (0, 1)).$

(2) G(x, 0) = x.

(3) $\exists z \in M \times (0, 1)$ such that G(x, 1) = z, for all $x \in C$.

We now can define the desired homotopy $H: V \times I \rightarrow U'$, by $H(x, t) = pf^{-1}(G(f\pi_{\delta}(x), t))$. Thus, $H(x, 0) = pf^{-1}[G(f\pi_{\delta}(x), 0)] = pf^{-1}(f\pi_{\delta}(x))$ = x.

$$H(x, 1) = pf^{-1}[G(f\pi_{\delta}(x), 1)] = pf^{-1}(z) = \text{constant.}$$

The continuity of f follows from that of G, so all that remains to be shown is that $H(x, t) \in U'$, for all $x \in V$, $\forall t \in I$.

$$x \in V \Rightarrow \pi_{\delta}(x) \in \pi_{\delta}(V) \Rightarrow f(\pi_{\delta}(x)) \in C \cap M \times (0, 1)$$
$$\Rightarrow G(f\pi_{\delta}(x), t) \in C \cap B^{\circ} \Rightarrow$$

that f^{-1} is defined and $f^{-1}[G(f\pi_{\delta}(x), t)] \in f^{-1}(C) \subset U \subset U' \times (\frac{1}{2}, 1]$. Thus $P(f^{-1}[G(f\pi_{\delta}(x), t)]) = H(x, t) \in U'$. Let $M \subset X$. *M* is collared if there is a homeomorphism $h: M \times (0, 1]$ \rightarrow nbd of *M* such that h(m, 1) = m, for all $m \in M$. M. Brown proved that the boundary of any manifold with boundary is collared [3]. Therefore, we have the following corollary.

COROLLARY. Let M be a manifold with boundary and let $f: M \rightarrow M$ be such that f restricted to the interior of M is a homeomorphism. Then $f/\partial M$ is a UV[∞]-map.

Using McMillan's criteria for cellularity, [9] it can easily be shown that if $f: M^n \to M^n$ is a UV^{∞}-map and if $M^n = S^3$ or $n \ge 5$, then f is a cellular map. (Cf., Armentrout and Price [2] or Lacher [8].) We therefore have the following theorem:

THEOREM. A mapping f of the n-sphere ∂B^{n+1} , $n \neq 4$, onto itself is cellular iff f has a continuous extension which maps the interior of B^4 homeomorphically onto itself.

COROLLARY. Let M be an m-manifold, $n \ge 5$, with boundary. Let f be a map of M onto M such that f/Int M: Int $M \rightarrow Int M$ is cellular and $f/\partial M: \partial M \rightarrow \partial M$. Then $f/\partial M$ is a UV^{∞} map. In particular, if $n \ge 6$, f/M is a cellular map.

PROOF. Define g: Int $M \to (0, \infty)$ by $g(m) = d(m, \partial M)$. Since f/Int M is a cellular map, by Siebenmann's theorem there is a homeomorphism h such that for all $x \in$ Int M, d(f(x), h(x)) < g(f(x)). We define $F: M \to M$ by

$$F(x) = h(x), \qquad x \in \text{Int } M,$$

= $f(x), \qquad x \in \partial M.$

F is continuous, for suppose there is a sequence, x_n , of points in Int M which converge to $x \in \partial M$. Let $\epsilon > 0$ be given. By the continuity of f, $\exists N \ni n > N \Longrightarrow d(f_n(x), f(x)) < \epsilon/2$. Then for such n,

$$d(F(x_n), F(x)) = d(h(x_n), f(x)) \leq d(h(x_n), f(x_n)) + d(f(x_n), f(x)) < \epsilon.$$

Thus, by Lemma 2, $F/\partial M = f/\partial M$ is a UV^{∞} map.

Armentrout's approximation theorem [1] and results of E. E. Floyd [5] make it possible to prove the corresponding result for three manifolds: For such M, if $f: M \rightarrow M$ is a proper map such that f/I and M is cellular, then $f/\partial M$ is cellular.

References

1. S. Armentrout, Concerning cellular decompositions of 3-manifolds that yield 3manifolds, Trans. Amer. Math. Soc. 133 (1968), 307-332. MR 37 #5859.

WILLIAM HAVER

2. S. Armentrout and T. Price, Decompositions into compact sets with UV properties, Trans. Amer. Math. Soc. 141 (1969), 433-446.

3. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341. MR 24 #A3637.

4. R. L. Finney, Uniform limits of compact cell-like maps, Notices Amer. Math. Soc. 15 (1968), 942. Abstract #68T-G26.

5. E. E. Floyd, The extension of homeomorphisms, Duke Math. J. 16 (1949), 225-235. MR 10, 726.

6. E. E. Floyd and M. K. Fort, A characterization theorem for monotone mappings, Proc. Amer. Math. Soc. 4 (1953), 828-830. MR 15, 244.

7. W. Haver, Cellular mappings on three manifolds, Notices Amer. Math. Soc. 16 (1969), 1054. Abstract #669-39.

8. R. C. Lacher, Cellularity criteria for maps (to appear).

9. D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327-337. MR 28 #4528.

10. Siebenmann, Approximating cellular maps by homeomorphisms (to appear).

STATE UNIVERSITY OF NEW YORK AT BINGHAMTON, BINGHAMTON, NEW YORK 13901